On the interior transmission eigenvalue problem

被引:43
|
作者
Cakoni, Fioralba [1 ]
Kirsch, Andreas [2 ]
机构
[1] Univ Delaware, Dept Mathmat Sci, Newark, DC USA
[2] KIT, Dept Math, D-76131 Karlsruhe, Germany
关键词
interior transmission problem; transmission eigenvalues; inhomogeneous medium; inverse scattering;
D O I
10.1504/IJCSM.2010.033932
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We consider the transmission eigenvalue problem corresponding to the scattering problem for anisotropic media for both the scalar Helmholtz equation and Maxwell's equations in the case when the contrast in the scattering media occurs in two independent functions. We prove the existence of an infinite discrete set of transmission eigenvalues provided that the two contrasts are of opposite signs. In this case we provide bounds for the first transmission eigenvalue in terms of the ratio of refractive indices. In the case of the same sign contrasts for the scalar case we show the existence of a finite number of transmission eigenvalues under restrictive assumptions on the strength of the scattering media.
引用
收藏
页码:142 / 167
页数:26
相关论文
共 50 条
  • [1] THE INTERIOR TRANSMISSION EIGENVALUE PROBLEM
    Cakoni, Fioralba
    Colton, David
    Gintides, Drossos
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2010, 42 (06) : 2912 - 2921
  • [2] Spectral analysis of the interior transmission eigenvalue problem
    Robbiano, Luc
    INVERSE PROBLEMS, 2013, 29 (10)
  • [3] The interior transmission eigenvalue problem for absorbing media
    Cakoni, Fioralba
    Colton, David
    Haddar, Houssem
    INVERSE PROBLEMS, 2012, 28 (04)
  • [4] A Multilevel Correction Method for Interior Transmission Eigenvalue Problem
    Hehu Xie
    Xinming Wu
    Journal of Scientific Computing, 2017, 72 : 586 - 604
  • [5] Strongly oscillating singularities for the interior transmission eigenvalue problem
    Dhia, Anne-Sophie Bonnet-Ben
    Chesnel, Lucas
    INVERSE PROBLEMS, 2013, 29 (10)
  • [6] A Multilevel Correction Method for Interior Transmission Eigenvalue Problem
    Xie, Hehu
    Wu, Xinming
    JOURNAL OF SCIENTIFIC COMPUTING, 2017, 72 (02) : 586 - 604
  • [7] The interior transmission eigenvalue problem for an inhomogeneous media with a conductive boundary
    Bondarenko, O.
    Harris, I.
    Kleefeld, A.
    APPLICABLE ANALYSIS, 2017, 96 (01) : 2 - 22
  • [8] THE INTERIOR TRANSMISSION EIGENVALUE PROBLEM FOR ELASTIC WAVES IN MEDIA WITH OBSTACLES
    Cakoni, Fioralba
    Kow, Pu-Zhao
    Wang, Jenn-Nan
    INVERSE PROBLEMS AND IMAGING, 2021, 15 (03) : 445 - 474
  • [9] The inverse interior transmission eigenvalue problem with mixed spectral data
    Wang, Yu Ping
    Shieh, Chung Tsun
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 343 : 285 - 298
  • [10] THE INTERIOR TRANSMISSION EIGENVALUE PROBLEM FOR AN ANISOTROPIC MEDIUM BY A PARTIALLY COATED BOUNDARY
    向建立
    严国政
    Acta Mathematica Scientia, 2024, 44 (01) : 339 - 354