CONVERGENCE PROPERTIES OF GENERALIZED BENDERS DECOMPOSITION

被引:112
|
作者
SAHINIDIS, NV
GROSSMANN, IE
机构
[1] Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh
基金
美国国家科学基金会;
关键词
D O I
10.1016/0098-1354(91)85027-R
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper addresses two major issues related to the convergence of generalized Benders decomposition which is an algorithm for the solution of mixed integer linear and nonlinear programming problems. First, it is demonstrated that a blind application of generalized Benders decomposition to nonconvex problems does not always lead to the global optimum for these problems; it may not even lead to a local optimum. It is shown that this happens because every local optimum of a nonlinear program gives rise to a local optimum in the projected problem of Benders. Subsequently, it is proved that a mixed integer nonlinear programming formulation with zero nonlinear programming relaxation gap requires only one Benders cut in order to converge, namely the cut corresponding to the optimal solution. This property indicates the importance of tight formulations for integer programs. Examples are given to illustrate the above properties.
引用
收藏
页码:481 / 491
页数:11
相关论文
共 50 条
  • [1] ON THE GENERALIZED BENDERS DECOMPOSITION
    BAGAJEWICZ, MJ
    MANOUSIOUTHAKIS, V
    COMPUTERS & CHEMICAL ENGINEERING, 1991, 15 (10) : 691 - 700
  • [2] EXTENSION OF THE GENERALIZED BENDERS DECOMPOSITION
    LAZIMY, R
    COMMUNICATIONS IN APPLIED NUMERICAL METHODS, 1986, 2 (02): : 195 - 203
  • [3] Heuristic to improve convergence of the Benders decomposition method
    Di Novella, Pedro
    CIENCIA E INGENIERIA, 2008, 29 (01): : 35 - 39
  • [4] Generalized Benders' Decomposition for topology optimization problems
    Munoz, Eduardo
    Stolpe, Mathias
    JOURNAL OF GLOBAL OPTIMIZATION, 2011, 51 (01) : 149 - 183
  • [5] Generalized Benders’ Decomposition for topology optimization problems
    Eduardo Muñoz
    Mathias Stolpe
    Journal of Global Optimization, 2011, 51 : 149 - 183
  • [6] Accelerating Generalized Benders Decomposition for Wireless Resource Allocation
    Lee, Mengyuan
    Ma, Ning
    Yu, Guanding
    Dai, Huaiyu
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2021, 20 (02) : 1233 - 1247
  • [7] Nonconvex sensitivity-based generalized Benders decomposition
    Lin, Jia-Jiang
    Xu, Feng
    Luo, Xiong-Lin
    JOURNAL OF GLOBAL OPTIMIZATION, 2023, 86 (01) : 37 - 60
  • [8] WARM-START CUTS FOR GENERALIZED BENDERS DECOMPOSITION
    Kudela, Jakub
    Popela, Pavel
    KYBERNETIKA, 2017, 53 (06) : 1012 - 1025
  • [9] Nonconvex sensitivity-based generalized Benders decomposition
    Jia-Jiang Lin
    Feng Xu
    Xiong-Lin Luo
    Journal of Global Optimization, 2023, 86 : 37 - 60
  • [10] THE APPLICATION OF GENERALIZED BENDERS DECOMPOSITION TO CERTAIN NONCONCAVE PROGRAMS
    ZAPPE, CJ
    CABOT, AV
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1991, 21 (6-7) : 181 - 190