A GENERALIZED-APPROACH TO PARTIAL DISCHARGE MODELING

被引:518
|
作者
NIEMEYER, L
机构
关键词
D O I
10.1109/94.407017
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
An important tool for improving the reliability of HV insulation systems are partial discharge (PD) measurements. The interpretation of such measurements aims at extracting from the measured data information about insulation defects which then are used for estimating the risk of insulation failure of the equipment. Because the physical understanding of PD has made substantial progress in the last decade, it can now be exploited to support interpretation. In this paper a concept is presented which merges the available physical knowledge about various PD types into a generalized model which can be applied to arbitrary insulation defects. This approach will be restricted to PD of the streamer type in gases and at gas-insulator interfaces which cover a large fraction of the cases encountered in technical insulation systems. The generalized model allows us to derive approximate relations between defect characteristics, insulation design parameters and test conditions on one side, and measurable PD characteristics on the other. The inversion of these relations yields rules for extracting defect information from the PD data. The application of the generalized model is illustrated by two simple examples, namely, spherical voids in an insulator and electrode protrusions in SF6.
引用
收藏
页码:510 / 528
页数:19
相关论文
共 50 条