Handwritten Devanagari Character Recognition Using Layer-Wise Training of Deep Convolutional Neural Networks and Adaptive Gradient Methods

被引:48
|
作者
Jangid, Mahesh [1 ]
Srivastava, Sumit [2 ]
机构
[1] Manipal Univ, Dept Comp Sci & Engn, Sch Comp & Informat Technol, Jaipur 303007, Rajasthan, India
[2] Manipal Univ, Dept Informat Technol, Sch Comp & Informat Technol, Jaipur 303007, Rajasthan, India
关键词
handwritten character recognition; deep learning; Devanagari characters; convolutional neural network; adaptive gradient methods;
D O I
10.3390/jimaging4020041
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
Handwritten character recognition is currently getting the attention of researchers because of possible applications in assisting technology for blind and visually impaired users, human-robot interaction, automatic data entry for business documents, etc. In this work, we propose a technique to recognize handwritten Devanagari characters using deep convolutional neural networks (DCNN) which are one of the recent techniques adopted from the deep learning community. We experimented the ISIDCHAR database provided by (Information Sharing Index) ISI, Kolkata and V2DMDCHAR database with six different architectures of DCNN to evaluate the performance and also investigate the use of six recently developed adaptive gradient methods. A layer-wise technique of DCNN has been employed that helped to achieve the highest recognition accuracy and also get a faster convergence rate. The results of layer-wise-trained DCNN are favorable in comparison with those achieved by a shallow technique of handcrafted features and standard DCNN.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Handwritten Devanagari Character Recognition using Convolutional Neural Network
    Mohite, Aarati
    Shelke, Sushama
    [J]. 2018 4TH INTERNATIONAL CONFERENCE FOR CONVERGENCE IN TECHNOLOGY (I2CT), 2018,
  • [2] Recognition of Handwritten Devanagari Character using Convolutional Neural Network
    Dokare, Indu
    Gadge, Siddhesh
    Kharde, Kedar
    Bhere, Siddhesh
    Jadhav, Rohit
    [J]. ICSPC'21: 2021 3RD INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATION (ICPSC), 2021, : 353 - 359
  • [3] Deep Convolutional Neural Network Classifier for Handwritten Devanagari Character Recognition
    Singh, Pratibha
    Verma, Ajay
    Chaudhari, Narendra S.
    [J]. INFORMATION SYSTEMS DESIGN AND INTELLIGENT APPLICATIONS, VOL 2, INDIA 2016, 2016, 434 : 551 - 561
  • [4] Layer-Wise Compressive Training for Convolutional Neural Networks
    Grimaldi, Matteo
    Tenace, Valerio
    Calimera, Andrea
    [J]. FUTURE INTERNET, 2019, 11 (01)
  • [5] Offline handwritten Devanagari modified character recognition using convolutional neural network
    Mamta Bisht
    Richa Gupta
    [J]. Sādhanā, 2021, 46
  • [6] Layer-Wise Training to Create Efficient Convolutional Neural Networks
    Zeng, Linghua
    Tian, Xinmei
    [J]. NEURAL INFORMATION PROCESSING (ICONIP 2017), PT II, 2017, 10635 : 631 - 641
  • [7] Offline handwritten Devanagari modified character recognition using convolutional neural network
    Bisht, Mamta
    Gupta, Richa
    [J]. SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 2021, 46 (01):
  • [8] Explaining Convolutional Neural Networks using Softmax Gradient Layer-wise Relevance Propagation
    Iwana, Brian Kenji
    Kuroki, Ryohei
    Uchida, Seiichi
    [J]. 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, : 4176 - 4185
  • [9] Voice Conversion Using Deep Neural Networks With Layer-Wise Generative Training
    Chen, Ling-Hui
    Ling, Zhen-Hua
    Liu, Li-Juan
    Dai, Li-Rong
    [J]. IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2014, 22 (12) : 1859 - 1872
  • [10] A Layer-Wise Theoretical Framework for Deep Learning of Convolutional Neural Networks
    Huu-Thiet Nguyen
    Li, Sitan
    Cheah, Chien Chern
    [J]. IEEE ACCESS, 2022, 10 : 14270 - 14287