THE HUBBARD-STRATONOVICH TRANSFORMATION AND THE HUBBARD-MODEL

被引:14
|
作者
SORELLA, S
机构
来源
关键词
D O I
10.1142/S0217979291000493
中图分类号
O59 [应用物理学];
学科分类号
摘要
The Hubbard-Stratonovich transformation allows one to formulate the problem of calculating the ground state properties of a many-body theory as one of sampling a distribution. This distribution is constructed by propagating a trial wave function under the influence of a one-body time-dependent external field. However, a straightforward application of the Hubbard-Stratonovich transformation gives distributions which are not always positive definite for a generic trial wave function. In this work it is rigorously shown that, for the Hubbard model, in many cases the non-positiveness of this distribution is not important for reaching the infinite imaginary time limit, i.e., the ground state properties.
引用
收藏
页码:937 / 976
页数:40
相关论文
共 50 条
  • [1] Bosonisation as the hubbard-stratonovich transformation
    Yurkevich, IV
    [J]. STRONGLY CORRELATED FERMIONS AND BOSONS IN LOW-DIMENSIONAL DISORDERED SYSTEMS, 2002, 72 : 69 - 80
  • [2] Hyperbolic Hubbard-Stratonovich transformation made rigorous
    Fyodorov, Y. V.
    Wei, Y.
    Zirnbauer, M. R.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2008, 49 (05)
  • [3] The Hubbard-Stratonovich Transformation and Exchange Boson Contributions
    Nguyen Van Hoa
    Nguyen Tri Lan
    [J]. 1ST INTERNATIONAL WORKSHOP ON THEORETICAL AND COMPUTATIONAL PHYSICS: CONDENSED MATTER, SOFT MATTER AND MATERIALS PHYSICS & 38TH NATIONAL CONFERENCE ON THEORETICAL PHYSICS, 2014, 537
  • [4] Generalized Gaussian integrals with application to the Hubbard-Stratonovich transformation
    Byczuk, Krzysztof
    Jakubczyk, Pawel
    [J]. AMERICAN JOURNAL OF PHYSICS, 2023, 91 (10) : 840 - 846
  • [5] DISCRETE HUBBARD-STRATONOVICH TRANSFORMATION FOR FERMION LATTICE MODELS
    HIRSCH, JE
    [J]. PHYSICAL REVIEW B, 1983, 28 (07): : 4059 - 4061
  • [6] A comparison of the superbosonization formula and the generalized Hubbard-Stratonovich transformation
    Kieburg, Mario
    Sommers, Hans-Juergen
    Guhr, Thomas
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (27)
  • [7] On Hubbard-Stratonovich transformations over hyperbolic domains
    Fyodorov, YV
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2005, 17 (20) : S1915 - S1928
  • [8] Flexible class of exact Hubbard-Stratonovich transformations
    Karakuzu, Seher
    Cohen-Stead, Benjamin
    Batista, Cristian D.
    Johnston, Steven
    Barros, Kipton
    [J]. PHYSICAL REVIEW E, 2023, 107 (05)
  • [9] Equivalence of domains for hyperbolic Hubbard-Stratonovich transformations
    Mueller-Hill, J.
    Zirnbauer, M. R.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (05)
  • [10] Gutzwiller wave function on a quantum computer using a discrete Hubbard-Stratonovich transformation
    Seki, Kazuhiro
    Otsuka, Yuichi
    Yunoki, Seiji
    [J]. PHYSICAL REVIEW B, 2022, 105 (15)