CUMULUS CLOUD-BASE HEIGHT ESTIMATION FROM HIGH SPATIAL-RESOLUTION LANDSAT DATA - A HOUGH TRANSFORM APPROACH

被引:24
|
作者
BERENDES, T
SENGUPTA, SK
WELCH, RM
WIELICKI, BA
NAVAR, M
机构
[1] LAWRENCE LIVERMORE NATL LAB,LAWRENCE LIVERMORE NATL LAB,LIVERMORE,CA 94551
[2] USN,OCEANOG & ATMOSPHER RES LAB,MONTEREY,CA 93943
[3] NASA,LANGLEY RES CTR,HAMPTON,VA 23665
来源
关键词
D O I
10.1109/36.142921
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Cloud base height is an essential variable governing surface energy budgets, but it is notoriously difficult to determine using satellite data. This study develops a semiautomated methodology to estimate cumulus cloud base heights using high spatial resolution LANDSAT Multispectral Scanner data. The approach employs a variety of image processing techniques to match cloud edges with their corresponding shadow edges. Cloud base height then is estimated by computing the separation distance between the corresponding Generalized Hough Transform reference points. Sixteen subregions, each 30 km x 30 km in size, are selected for four LANDSAT scenes. Standard deviations of cloud base height within each of the subregions range from about 100 m to 150 m. Differences between cloud base heights computed using the Hough Transform and a manual verification technique are small (on the order of 100 m or less). The cloud base heights also compare favorably with the few surface observations available. On the basis of these results, it is estimated that cloud base height accuracies of 50-70 m may be possible using HIRIS and ASTER instruments in the EOS Global Climate Change program.
引用
下载
收藏
页码:430 / 443
页数:14
相关论文
共 47 条
  • [1] CUMULUS CLOUD FIELD MORPHOLOGY AND SPATIAL PATTERNS DERIVED FROM HIGH SPATIAL-RESOLUTION LANDSAT IMAGERY
    SENGUPTA, SK
    WELCH, RM
    NAVAR, MS
    BERENDES, TA
    CHEN, DW
    JOURNAL OF APPLIED METEOROLOGY, 1990, 29 (12): : 1245 - 1267
  • [2] ANALYSIS OF SPATIAL INHOMOGENEITIES IN CUMULUS CLOUDS USING HIGH SPATIAL-RESOLUTION LANDSAT DATA
    PARKER, L
    WELCH, RM
    MUSIL, DJ
    JOURNAL OF CLIMATE AND APPLIED METEOROLOGY, 1986, 25 (10): : 1301 - 1314
  • [3] THE LIMITATION OF CLOUD-BASE MASS FLUX IN CUMULUS PARAMETERIZATION AND ITS APPLICATION IN A HIGH-RESOLUTION MODEL
    Xu Dao-sheng
    Chen Zi-tong
    Zhong Shui-xin
    Wen Yan-jun
    Xie Dong-dong
    JOURNAL OF TROPICAL METEOROLOGY, 2015, 21 : 11 - 22
  • [4] Using Artificial Neural Networks to Estimate Cloud-Base Height From AERI Measurement Data
    Ye, Jin
    Liu, Lei
    Yang, Wanying
    Ren, Hong
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [6] Cloud-Base Height Estimation from VIIRS. Part II: A Statistical Algorithm Based on A-Train Satellite Data
    Noh, Yoo-Jeong
    Forsythe, John M.
    Miller, Steven D.
    Seaman, Curtis J.
    Li, Yue
    Heidinger, Andrew K.
    Lindsey, Daniel T.
    Rogers, Matthew A.
    Partain, Philip T.
    JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2017, 34 (03) : 585 - 598
  • [7] Cloud-Base Height Estimation from VIIRS. Part I: Operational Algorithm Validation against CloudSat
    Seaman, Curtis J.
    Noh, Yoo-Jeong
    Miller, Steven D.
    Heidinger, Andrew K.
    Lindsey, Daniel T.
    JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2017, 34 (03) : 567 - 583
  • [8] Cloud-Base Height Retrieval from MODIS Satellite Data Based on Self-Organizing Neural Networks
    A. V. Skorokhodov
    K. N. Pustovalov
    E. V. Kharyutkina
    V. G. Astafurov
    Atmospheric and Oceanic Optics, 2023, 36 : 723 - 734
  • [9] CLOUD BASE HEIGHT ESTIMATION USING HIGH-RESOLUTION WHOLE SKY IMAGERS
    Savoy, Florian M.
    Lemaitre, Joseph C.
    Dev, Soumyabrata
    Lee, Yee Hui
    Winkler, Stefan
    2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 1622 - 1625
  • [10] Cloud-Base Height Retrieval from MODIS Satellite Data Based on Self-Organizing Neural Networks
    Skorokhodov, A. V.
    Pustovalov, K. N.
    Kharyutkina, E. V.
    Astafurov, V. G.
    ATMOSPHERIC AND OCEANIC OPTICS, 2023, 36 (06) : 723 - 734