Discrete and computational geometry. The Goodman-Pollack Festschrift

被引:0
|
作者
Fodor, Ferenc
机构
来源
ACTA SCIENTIARUM MATHEMATICARUM | 2005年 / 71卷 / 1-2期
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:449 / 449
页数:1
相关论文
共 23 条
  • [1] PARALLEL COMPUTATIONAL GEOMETRY.
    Aggarwal, A.
    Chazelle, B.
    Guibas, L.
    O'Dunlaing, C.
    Yap, C.
    [J]. Algorithmica (New York), 1988, 3 (03): : 293 - 327
  • [2] Discrete differential geometry. Integrability as consistency
    Bobenko, AI
    [J]. DISCRETE INTEGRABLE SYSTEMS, 2004, 644 : 85 - 110
  • [3] On organizing principles of discrete differential geometry. Geometry of spheres
    Bobenko, A. I.
    Suris, Yu. B.
    [J]. RUSSIAN MATHEMATICAL SURVEYS, 2007, 62 (01) : 1 - 43
  • [4] Computational Discrete Geometry
    Hales, Thomas C.
    [J]. MATHEMATICAL SOFTWARE - ICMS 2010, 2010, 6327 : 1 - 3
  • [5] Musings on discrete geometry and "20 years of Discrete & Computational Geometry"
    Grunbaum, Branko
    [J]. SURVEYS ON DISCRETE AND COMPUTATIONAL GEOMETRY: TWENTY YEARS LATER, 2008, 453 : 1 - 7
  • [6] Discrete and computational geometry - Editorial
    Akiyama, J
    Asano, T
    Kano, M
    [J]. COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2003, 24 (01): : 1 - 1
  • [7] DISCRETE ENERGY NON-LINEAR BENDING OF PLATES WITH CIRCULAR GEOMETRY.
    Patodi, S.C.
    Bhavsar, M.C.
    [J]. Journal of the Institution of Engineers (India): Civil Engineering Division, 1983, 64 (pt CI 3): : 182 - 192
  • [8] Insight in discrete geometry and computational content of a discrete model of the continuum
    Chollet, A.
    Wallet, G.
    Fuchs, L.
    Largeteau-Skapin, G.
    Andres, E.
    [J]. PATTERN RECOGNITION, 2009, 42 (10) : 2220 - 2228
  • [9] Surface theory in discrete projective differential geometry. I. A canonical frame and an integrable discrete Demoulin system
    Schief, W. K.
    Szereszewski, A.
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2018, 474 (2214):
  • [10] Preface: Discrete and computational geometry and their applications in visual computing
    Mathematics Department, SUNY Buffalo State College, Buffalo, NY 14222, United States
    不详
    [J]. Int. J. Shaping Model., 2008, 2 (v-vii):