QUANTUM GALILEI GROUP AS SYMMETRY OF MAGNONS

被引:24
|
作者
BONECHI, F
CELEGHINI, E
GIACHETTI, R
SORACE, E
TARLINI, M
机构
[1] IST NAZL FIS NUCL,FLORENCE,ITALY
[2] UNIV BOLOGNA,DIPARTIMENTO MATEMAT,I-40126 BOLOGNA,ITALY
来源
PHYSICAL REVIEW B | 1992年 / 46卷 / 09期
关键词
D O I
10.1103/PhysRevB.46.5727
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Inhomogeneous quantum groups are shown to be an effective algebraic tool in the study of integrable systems. The method is illustrated on the one-dimensional Heisenberg ferromagnet whose symmetry is investigated by means of the quantum Galilei group GAMMA(q)(1) here introduced. Both the single magnon and the s = 1/2 bound states of n magnons are completely described by the algebra. Therefore, some of the results provided by the Bethe-ansatz method emerge as a natural consequence of the quantum symmetry of the discrete chain.
引用
收藏
页码:5727 / 5730
页数:4
相关论文
共 50 条
  • [1] The Quantum Galilei Group
    Mod Phys Lett A, 36 (2757):
  • [2] The quantum Galilei group
    Giller, S
    Gonera, C
    Kosinski, P
    Maslanka, P
    MODERN PHYSICS LETTERS A, 1995, 10 (36) : 2757 - 2766
  • [3] RELATIVISTIC QUANTUM MECHANICAL GALILEI GROUP
    AGHASSI, JJ
    ROMAN, P
    SANTILLI, RM
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1970, 15 (01): : 49 - &
  • [4] GALILEI GROUP AND NONRELATIVISTIC QUANTUM MECHANICS
    LEVYLEBLOND, JM
    JOURNAL OF MATHEMATICAL PHYSICS, 1963, 4 (06) : 776 - &
  • [5] Spherical symmetry in classical and quantum Galilei general relativity
    Vitolo, R
    ANNALES DE L INSTITUT HENRI POINCARE-PHYSIQUE THEORIQUE, 1996, 64 (02): : 177 - 203
  • [6] Time dependent quantum generators for the Galilei group
    Filippelli, G.
    JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (08)
  • [7] HEISENBERG XXZ MODEL AND QUANTUM GALILEI GROUP
    BONECHI, F
    CELEGHINI, E
    GIACHETTI, R
    SORACE, E
    TARLINI, M
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (15): : L939 - L943
  • [8] On simple modules and automorphisms of the quantum Galilei group
    Lu, Tao
    Xu, Mingfan
    COMMUNICATIONS IN ALGEBRA, 2024, 52 (08) : 3490 - 3511
  • [9] RELATIONSHIP BETWEEN GALILEI GROUP AND ANY INTERNAL SYMMETRY GROUP OF NONRELATIVISTIC PARTICLES
    FLEISCHMAN, O
    NAGEL, JG
    NUOVO CIMENTO A, 1966, 45 (04): : 937 - +
  • [10] Deformed Galilei symmetry
    Kosinski, P
    Maslanka, P
    MODERN PHYSICS LETTERS A, 1999, 14 (31) : 2139 - 2149