Estimating Oil Reservoir Permeability and Porosity from Two Interacting Wells

被引:0
|
作者
Sutawaniri [1 ]
Gunawan, Agus Yodi [2 ]
Fitriyati, Nina [3 ]
Fahmi, Iskandar [4 ]
Septiani, Anggita [5 ]
Marwati, Rini [6 ]
机构
[1] Inst Teknol Bandung Indonesia, Div Stat Res, Jalan Ganesa 10, Bandung 40132, Indonesia
[2] Inst Teknol Bandung Indonesia, Ind Financial Res Div, Bandung 40132, Indonesia
[3] UIN Syarif Hidayatullah, Math Dept, Ciputat 15412, Tangerang Bante, Indonesia
[4] Inst Teknol Bandung, Oi1 & Gas Drilling Prod & Management Res Div, Bandung 40132, Indonesia
[5] Inst Teknol Bandung, Math Study Program, Bandung 40132, Indonesia
[6] Univ Pendidikan Indonesia Bandung Indonesia, Bandung 40154, Indonesia
关键词
ensemble Kalman filter; flow model; interacting well; Laplace transform; sequential estimation;
D O I
10.5614/j.math.fund.sci.2013.45.2.4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The Ensemble Kalman Filter (EnKF) can be used as a method to estimate reservoir parameters, such as permeability and porosity. These parameters play an important role in characterizing reservoir performance. The EnKF is a sequential estimation method that uses the parameters at t - 1 (called prior) to estimate the parameters at t adjusted by observations at t (called posterior). In this paper, the EnKF was used to estimate the reservoir parameters for the case of a linear flow of two interacting production-injection oil wells. The Laplace transform was used to obtain an analytical solution of the diffusivity equation. A state space representation was generated using the analytical solution. A simulation study showed that the proposed method can be used successfully to estimate the reservoir parameters using well-pressure observations.
引用
收藏
页码:144 / 153
页数:10
相关论文
共 50 条
  • [1] Determination of oil reservoir permeability and porosity from resistivity measurement using an analytical model
    Boaca, Tudor
    Malureanu, Ion
    [J]. JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2017, 157 : 884 - 893
  • [2] Productivity for Horizontal Wells in Low-Permeability Reservoir with Oil/Water Two-Phase Flow
    Zhao, Yu-Long
    Zhang, Lie-Hui
    He, Zhi-Xiong
    Zhang, Bo-Ning
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2014, 2014
  • [3] Effects of composition, texture and diagenesis on porosity, permeability and oil recovery in a sandstone reservoir
    Coskun, Sefer B.
    Wardlaw, Norman C.
    Haverslew, Beth
    [J]. JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 1993, 8 (04) : 279 - 292
  • [4] Estimating permeability of carbonate rocks from porosity and vp/vs
    Fabricius, Ida L.
    Baechle, Gregor
    Eberli, Gregor P.
    Weger, Ralf
    [J]. GEOPHYSICS, 2007, 72 (05) : E185 - E191
  • [5] Estimating reservoir permeability with borehole radar
    Zhou, Feng
    Giannakis, Iraklis
    Giannopoulos, Antonios
    Holliger, Klaus
    Slob, Evert
    [J]. GEOPHYSICS, 2020, 85 (04) : H51 - H60
  • [6] On a Deep Learning Method of Estimating Reservoir Porosity
    Zhang, Zhenhua
    Wang, Yanbin
    Wang, Pan
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [7] Numerical Simulation of the Effect of Reservoir Properties on Oil Production from the Low-Permeability Formation by Extended Reach Wells
    Li, Yanlai
    [J]. GEOFLUIDS, 2023, 2023
  • [8] Multimodal reservoir porosity simulation: An application to a tight oil reservoir
    Sauvageau, Mathieu
    Gloaguen, Erwan
    Claprood, Maxime
    Lefebvre, Rene
    Beche, Martin
    [J]. JOURNAL OF APPLIED GEOPHYSICS, 2014, 107 : 71 - 79
  • [9] Permeability estimating from complex resistivity measurement of shaly sand reservoir
    Tong, Maosong
    Tao, Honggen
    [J]. GEOPHYSICAL JOURNAL INTERNATIONAL, 2008, 173 (02) : 733 - 739
  • [10] Estimating permeability in a limestone geothermal reservoir from NMR laboratory experiments
    Catinat, Maxime
    Fleury, Marc
    Brigaud, Benjamin
    Antics, Miklos
    Ungemach, Pierre
    [J]. GEOTHERMICS, 2023, 111