Glucocorticoids and mineralocorticoids are synthesized in the adrenal cortex through the action of two different cytochrome 11 beta-hydroxylases, CYP11B1 (11 beta-hydroxylase) and CYP11B2 (aldosterone synthase) which are distributed in the zona fasciculata and glomerulosa, respectively. We have created stably transfected cell lines using the Leydig tumor eel line MA-10 with CYP1IB1 and CYP11B2 cDNA-containing plasmids which have a selectable gene to confer resistance to geneticin. The expression of the transfected cDNA in the cells was characterized by Northern-blot and measurement of enzymatic activity. The cell lines express the enzymes stably for many generations. CYP11B1 transfected cells converted DOC into corticosterone, 18-OH-DOC and small amounts of 18-OH-corticosterone, in a time and concentration dependent manner. Incubation of the cells with corticosterone generated 18-OH-corticosterone especially at concentrations of 30 and 100 mu M. The production of 18-OH-corticosterone from corticosterone at these doses was significantly higher than incubations with similar concentrations of DOG. CYP11B2 transfected cells converted DOC into corticosterone, 18-OH-corticosterone, aldosterone and small amounts of 18-OH-DOG in a time and concentration dependent manner. They converted corticosterone into 18-OH-corticosterone and aldosterone in a time and concentration dependent manner. The absolute and relative production of aldosterone from DOC was significantly higher than when cells were incubated with corticosterone, and the ratio of aldosterone to 18-OH-corticosterone was higher at all concentrations of DOC compared to corticosterone. CYP11B2 transfected cells (but not the CYP11B1 transfected cells) transform 18-OH-DOC into Is-OH-corticosterone, but can not convert 18-OH-DOG into aldosterone. In conclusion, stably transfected MA-10 cells with the cDNAs for the CYP11B1 and CYP11B2 enzymes were prepared and their enzymatic activity studied. These cells are useful in the study of inhibitors of the specific enzymes, as well as determining the roles that each enzyme plays in zone-specific steroidogenesis in the adrenal cortex.