HAS EVERY LATIN SQUARE OF ORDER N A PARTIAL LATIN TRANSVERSAL OF SIZE N-1

被引:15
|
作者
ERDOS, P [1 ]
HICKERSON, DR [1 ]
NORTON, DA [1 ]
STEIN, SK [1 ]
机构
[1] UNIV CALIF DAVIS,DEPT MATH,DAVIS,CA 95616
来源
AMERICAN MATHEMATICAL MONTHLY | 1988年 / 95卷 / 05期
关键词
D O I
10.2307/2322477
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:428 / 430
页数:3
相关论文
共 50 条
  • [2] A lower bound for the length of a partial transversal in a Latin square
    Hatami, Pooya
    Shor, Peter W.
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2008, 115 (07) : 1103 - 1113
  • [3] A LOWER BOUND FOR THE LENGTH OF A PARTIAL TRANSVERSAL IN A LATIN SQUARE
    SHOR, PW
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1982, 33 (01) : 1 - 8
  • [4] On the Length of a Partial Independent Transversal in a Matroidal Latin Square
    Kotlar, Daniel
    Ziv, Ran
    ELECTRONIC JOURNAL OF COMBINATORICS, 2012, 19 (02):
  • [5] Latin Matchings and Ordered Designs OD(n-1, n, 2n-1)
    Jin, Kai
    Zhu, Taikun
    Gu, Zhaoquan
    Sun, Xiaoming
    MATHEMATICS, 2022, 10 (24)
  • [6] Every latin hypercube of order 5 has transversals
    Perezhogin, Alexey L.
    Potapov, Vladimir N.
    Vladimirov, Sergey Yu.
    JOURNAL OF COMBINATORIAL DESIGNS, 2024, 32 (11) : 679 - 699
  • [7] The effect of sample size (N) in a standard Latin square cardiovascular study design
    Coffee, Matt
    Adkins, James
    Vidmar, Tom
    Atterson, Phil
    JOURNAL OF PHARMACOLOGICAL AND TOXICOLOGICAL METHODS, 2015, 75 : 173 - 173
  • [8] Improved packings of n(n-1) unit squares in a square
    Arslanov, M. Z.
    Mustafin, S. A.
    Shangitbayev, Z. K.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2021, 28 (04):
  • [9] Generalized Latin squares of order n with n2 − 1 distinct elements
    H. V. Chen
    A. Y. M. Chin
    S. Sharmini
    Periodica Mathematica Hungarica, 2013, 66 : 105 - 109
  • [10] Generalized Latin squares of order n with n2-1 distinct elements
    Chen, H. V.
    Chin, A. Y. M.
    Sharmini, S.
    PERIODICA MATHEMATICA HUNGARICA, 2013, 66 (01) : 105 - 109