Maximum likelihood source localisation in wireless sensor network using particle swarm optimisation

被引:5
|
作者
Panigrahi, T. [1 ]
Panda, G. [2 ]
Majhi, B. [3 ]
机构
[1] Natl Inst Technol Rourkela, Dept Elect & Commun Engn, Rourkela 769008, India
[2] Indian Inst Technol Bhubaneswar, Sch Elect Sci, Bhubaneswar 713002, Orissa, India
[3] Sikhya o Anusandhan Univ, Dept Informat Technol, ITER, Bhubaneswar, Orissa, India
关键词
WSN; wireless sensor network; maximum likelihood estimation; MUSIC; PSO; particle swarm optimisation; direction of arrival;
D O I
10.1504/IJSISE.2013.053414
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Direction-Of-Arrival (DOA) estimation in wireless sensor network is an important problem. Decentralised approach using antenna arrays at each node or sensor arrays at different positions are used to localise the sources. In this paper we proposed a centralised method where every node will participate in bearing estimation to achieve best resolution with minimum computation. The DOA is obtained by optimising ML function formed by a random array with all the nodes globally. A Particle Swarm Optimisation (PSO) based solution is proposed here to compute DOA. Simulation results confirm the advantages of PSO over most analysed multiple signal classification (MUSIC) algorithms.
引用
收藏
页码:83 / 90
页数:8
相关论文
共 50 条
  • [1] Source Localisation in Wireless Sensor Networks Based on Optimised Maximum Likelihood
    Rahman, A. Ziaur
    Habibi, Daryoush
    Ahmad, Iftekhar
    [J]. ATNAC: 2008 AUSTRALASIAN TELECOMMUNICATION NETWOKS AND APPLICATIONS CONFERENCE, 2008, : 235 - 239
  • [2] Maximum likelihood array calibration using particle swarm optimisation
    Wan, S.
    Chung, P. -J.
    Mulgrew, B.
    [J]. IET SIGNAL PROCESSING, 2012, 6 (05) : 456 - 465
  • [3] Particle swarm optimisation base on Monte Carlo localisation for mobile sensor network
    Zhao, Chuan Xin
    Wang, Ru Chuan
    [J]. INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2011, 14 (04) : 242 - 249
  • [4] Source Localisation Using Wavefield Correlation-Enhanced Particle Swarm Optimisation
    Rossides, George
    Hunter, Alan
    Metcalfe, Benjamin
    [J]. ROBOTICS, 2022, 11 (02)
  • [5] Improved maximum likelihood estimation of target position in wireless sensor networks using particle swarm optimization
    Noel, Mathew M.
    Joshi, Parag P.
    Jannett, Thomas C.
    [J]. THIRD INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY: NEW GENERATIONS, PROCEEDINGS, 2006, : 274 - +
  • [6] Distributed resource allocation optimisation algorithm based on particle swarm optimisation in wireless sensor network
    Hao, Xiaochen
    Yao, Ning
    Wang, Jiaojiao
    Wang, Liyuan
    [J]. IET COMMUNICATIONS, 2020, 14 (17) : 2990 - 2999
  • [7] Maximum Likelihood DOA Estimation in Wireless Sensor Networks Using Comprehensive Learning Particle Swarm Optimization Algorithm
    Roula, Srinivash
    Gantayat, Harikrishna
    Panigrahi, T.
    Panda, G.
    [J]. COMPUTATIONAL INTELLIGENCE IN DATA MINING, VOL 3, 2015, 33
  • [8] 3D DV-hop localisation scheme based on particle swarm optimisation in wireless sensor networks
    Chen, Xiao
    Zhang, Benliang
    [J]. INTERNATIONAL JOURNAL OF SENSOR NETWORKS, 2014, 16 (02) : 100 - 105
  • [9] Maximum Likelihood DOA Estimation Using Particle Swarm Optimization under Sensor Perturbation Conditions
    Shen, Chih-Chang
    [J]. JOURNAL OF INTERNET TECHNOLOGY, 2015, 16 (05): : 847 - 855
  • [10] Wireless sensor networks routing algorithm based on particle swarm optimisation
    Yang, Junhan
    [J]. INTERNATIONAL JOURNAL OF INTERNET PROTOCOL TECHNOLOGY, 2018, 11 (03) : 159 - 164