Biomechanical Characteristics of an Integrated Lumbar Interbody Fusion Device

被引:5
|
作者
Voronov, Leonard I. [1 ,2 ]
Vastardis, Georgios [1 ,2 ]
Zelenakova, Julia [2 ]
Carandang, Gerard [2 ]
Havey, Robert M. [1 ,2 ]
Waldorff, Erik I. [3 ]
Zindrick, Michael R. [1 ]
Patwardhan, Avinash G. [1 ,2 ]
机构
[1] Loyola Univ, Med Ctr, Dept Orthopaed Surg & Rehabil, Maywood, IL 60153 USA
[2] Edward Hines Jr VA Hosp, Dept Vet Affairs, Musculoskeletal Biomech Lab, Hines, IL USA
[3] Orthofix, Lewisville, TX USA
来源
INTERNATIONAL JOURNAL OF SPINE SURGERY | 2014年 / 8卷
关键词
Integrated Lumbar Interbody Fusion; lumbar spine; biomechanics;
D O I
10.14444/1001
中图分类号
R61 [外科手术学];
学科分类号
摘要
Introduction We hypothesized that an Integrated Lumbar Interbody Fusion Device (PILLAR SA, Orthofix, Lewisville, TX) will function biomechanically similar to a traditional anterior interbody spacer (PILLAR AL, Orthofix, Lewisville, TX) plus posterior instrumentation (FIREBIRD, Orthofix, Lewisville, TX). Purpose of this study was to determine if an Integrated Interbody Fusion Device (PILLAR SA) can stabilize single motion segments as well as an anterior interbody spacer (PILLAR AL) + pedicle screw construct (FIREBIRD). Methods Eight cadaveric lumbar spines (age: 43.9 +/- 4.3 years) were used. Each specimen's range of motion was tested in flexion-extension (FE), lateral bending (LB), and axial rotation (AR) under intact condition, after L4-L5 PILLAR SA with intervertebral screws and after L4-L5 360 degrees fusion (PILLAR AL+Pedicle Screws and rods (FIREBIRD). Each specimen was tested in flexion (8Nm) and extension (6Nm) without preload (0N) and under 400N of preload, in lateral bending (+/- 6 Nm) and axial rotation (+/- 5 Nm) without preload. Results Integrated fusion using the PILLAR SA device demonstrated statistically significant reductions in ange of motion of the L4-L5 motion segment as compared to the intact condition for each test direction. PILLAR SA reduced ROM from 8.9 +/- 1.9 to 2.9 +/- 1.1 degrees in FE with 400N follower preload (67.4%), 8.0 +/- 1.7 to 2.5 +/- 1.1 degrees in LB, and 2.2 +/- 1.2 to 0.7 +/- 0.3 degrees in AR. A comparison between the PILLAR SA integrated fusion device versus 360 degrees fusion construct with spacer and bilateral pedicle screws was statistically significant in FE and LB. The 360 degrees fusion yielded motion of 1.0 +/- 0.5 degrees in FE, 1.0 +/- 0.8 degrees in LB (p0.05). Conclusions The PILLAR SA resulted in motions of less than 3 degrees in all modes of motion and was not as motion restricting as the traditional 360 degrees using bilateral pedicle screws. The residual segmental motions compare very favorably with published biomechanical studies of other interbody integrated fusion devices.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Biomechanical comparison of anterior lumbar interbody fusion and transforaminal lumbar interbody fusion
    Ploumis, Avraam
    Wu, Chunhui
    Fischer, Gustav
    Mehbod, Amir A.
    Wu, Wentien
    Faundez, Antonio
    Transfeldt, Ensor E.
    JOURNAL OF SPINAL DISORDERS & TECHNIQUES, 2008, 21 (02): : 120 - 125
  • [2] An In Vitro Biomechanical Evaluation of a Lateral Lumbar Interbody Fusion Device With Integrated Lateral Modular Plate Fixation
    DenHaese, Ryan
    Gandhi, Anup
    Ferry, Chris
    Farmer, Sam
    Porter, Randall
    GLOBAL SPINE JOURNAL, 2021, 11 (03) : 351 - 358
  • [3] A biomechanical investigation of lumbar interbody fusion techniques
    Umale, Sagar
    Yoganandan, Narayan
    Baisden, Jamie L.
    Choi, Hoon
    Kurpad, Shekar N.
    JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, 2022, 125
  • [4] Biomechanical evaluation of Percutaneous endoscopic posterior lumbar interbody fusion and minimally invasive transforaminal lumbar interbody fusion: a biomechanical analysis
    Li, Jia-Rui
    Yan, Yang
    Wu, Xiao-Gang
    He, Li-Ming
    Feng, Hao-Yu
    COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING, 2024, 27 (03) : 285 - 295
  • [5] Biomechanical Comparison of Posterior Lumbar Interbody Fusion and Transforaminal Lumbar Interbody Fusion by Finite Element Analysis
    Xu, Hao
    Tang, Hao
    Guan, Xuemei
    Jiang, Fugui
    Xu, Neng
    Ju, Wen
    Zhu, Xiaodong
    Zhang, Xiaojian
    Zhang, Qiulin
    Li, Ming
    NEUROSURGERY, 2013, 72 : 21 - 26
  • [6] Biomechanical comparison of posterior lumbar interbody fusion and transforaminal lumbar interbody fusion performed at 1 and 2 levels
    Ames, CP
    Acosta, FL
    Chi, J
    Iyengar, J
    Muiru, W
    Acaroglu, E
    Puttlitz, CM
    SPINE, 2005, 30 (19) : E562 - E566
  • [7] Biomechanical comparison of biodegradable lumbar interbody fusion cages
    Khodadadyan-Klostermann, C
    Kandziora, F
    Schnake, KJ
    Lewandrowski, KU
    Wise, D
    Weiler, A
    Haas, NP
    CHIRURG, 2001, 72 (12): : 1431 - 1438
  • [8] Biomechanical analysis of cages for posterior lumbar interbody fusion
    Fantigrossi, Alfonso
    Galbusera, Fabio
    Raimondi, Manuela Teresa
    Sassi, Marco
    Fornari, Maurizio
    MEDICAL ENGINEERING & PHYSICS, 2007, 29 (01) : 101 - 109
  • [9] Biomechanical comparison of posterior lumbar interbody fusion cages
    Rapoff, AJ
    Ghanayem, AJ
    Zdeblick, TA
    SPINE, 1997, 22 (20) : 2375 - 2379
  • [10] Biomechanical role of cement augmentation in the vibration characteristics of the osteoporotic lumbar spine after lumbar interbody fusion
    Wang, Qing-Dong
    Guo, Li-Xin
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2022, 33 (06)