GROWTH OF INTERFACES WITH STRONG QUENCHED DISORDER - COLUMNAR MEDIA

被引:8
|
作者
LOPEZ, JM [1 ]
RODRIGUEZ, MA [1 ]
机构
[1] UNIV CANTABRIA,DEPT FIS MODERNA,E-39005 SANTANDER,SPAIN
来源
PHYSICAL REVIEW E | 1995年 / 52卷 / 06期
关键词
D O I
10.1103/PhysRevE.52.6442
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The growth of interfaces through columnar media is analyzed using a simple two-dimensional model in which the pinning force and the diffusivity are modeled by random quenched fields. The characteristic roughness exponents chi and beta are analytically obtained in agreement with simulations. It is shown how disorder in the diffusivity, controlled by a parameter alpha < 1, strongly affects the scaling of the interface. Disorder-dependent exponents beta = (3 - alpha)/[2(2 - alpha)] and chi = (3 - alpha)/[2(1 - alpha)] are exactly calculated.
引用
收藏
页码:6442 / 6447
页数:6
相关论文
共 50 条
  • [1] Laplacian fractal growth in media with quenched disorder
    Cafiero, R
    Gabrielli, A
    Marsili, M
    Pietronero, L
    Torosantucci, L
    [J]. PHYSICAL REVIEW LETTERS, 1997, 79 (08) : 1503 - 1506
  • [2] Growing interfaces in quenched disordered media
    Braunstein, LA
    Buceta, RC
    Díaz-Sánchez, A
    [J]. PHYSICA A, 1999, 266 (1-4): : 334 - 338
  • [3] Percolation in Media with Columnar Disorder
    Grassberger, Peter
    Hilario, Marcelo R.
    Sidoravicius, Vladas
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2017, 168 (04) : 731 - 745
  • [4] Percolation in Media with Columnar Disorder
    Peter Grassberger
    Marcelo R. Hilário
    Vladas Sidoravicius
    [J]. Journal of Statistical Physics, 2017, 168 : 731 - 745
  • [5] DRIVEN INTERFACES IN QUENCHED DISORDER AT CRITICAL DEPINNING
    GALLUCCIO, S
    ZHANG, YC
    [J]. PHYSICAL REVIEW E, 1995, 51 (03): : 1686 - 1689
  • [6] A review of growing interfaces in quenched disordered media
    Braunstein, LA
    Buceta, RC
    Díaz-Sánchez, A
    Giovambattista, N
    [J]. MATERIALS INSTABILITIES, 2000, : 281 - 303
  • [7] Fractal growth with quenched disorder
    Pietronero, L
    Cafiero, R
    Gabrielli, A
    [J]. COMPLEX BEHAVIOUR OF GLASSY SYSTEMS, 1997, 492 : 426 - 437
  • [8] EFFECT OF QUENCHED DISORDER ON MOVING INTERFACES IN 2 DIMENSIONS
    NOLLE, CS
    KOILLER, B
    MARTYS, N
    ROBBINS, MO
    [J]. PHYSICA A, 1994, 205 (1-3): : 342 - 354
  • [9] Growing interfaces in quenched media: stochastic differential equation
    Archubi, CD
    Braunstein, LA
    Buceta, RC
    [J]. PHYSICA A, 2000, 283 (1-2): : 204 - 207
  • [10] Microscopic equation for growing interfaces in quenched disordered media
    Braunstein, LA
    Buceta, RC
    Díaz-Sánchez, A
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (10): : 1801 - 1807