Picard Type Iterative Scheme with Initial Iterates in Reverse Order for a Class of Nonlinear Three Point BVPs

被引:5
|
作者
Singh, Mandeep [1 ]
Verma, Amit K. [1 ]
机构
[1] BITS Pilani, Dept Math, Pilani 333031, Rajasthan, India
关键词
D O I
10.1155/2013/728149
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the following class of three point boundary value problem y''(t)+f(t,y) - 0,0 < t < 1, y'(0) - 0, y(1) - delta Y(n), where delta>0, 0 < n < 1the source term f(t,y) is Lipschitz and continuous. We use monotone iterative technique in the presence of upper and lower solutions for both well- order and reverse order cases. Under some sufficient conditions, we prove some new existence results. We use examples and figures to demonstrate that monotone iterative method can efficiently be used for computation of solutions of nonlinear BVPs.
引用
收藏
页数:6
相关论文
共 27 条
  • [1] On a monotone iterative method for a class of three point nonlinear nonsingular BVPs with upper and lower solutions in reverse order
    Singh M.
    Verma A.K.
    Journal of Applied Mathematics and Computing, 2013, 43 (1-2) : 99 - 114
  • [2] A different monotone iterative technique for a class of nonlinear three-point BVPs
    Mandeep Singh
    Nazia Urus
    Amit K. Verma
    Computational and Applied Mathematics, 2021, 40
  • [3] A different monotone iterative technique for a class of nonlinear three-point BVPs
    Singh, Mandeep
    Urus, Nazia
    Verma, Amit K.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2021, 40 (08):
  • [4] A Note on Existence Results for a Class of Three-Point Nonlinear BVPs
    Verma, Amit K.
    Singh, Mandeep
    MATHEMATICAL MODELLING AND ANALYSIS, 2015, 20 (04) : 457 - 470
  • [5] Well Ordered Monotone Iterative Technique for Nonlinear Second Order Four Point Dirichlet BVPs
    Verma, Amit
    Urus, Nazia
    MATHEMATICAL MODELLING AND ANALYSIS, 2022, 27 (01) : 59 - 77
  • [6] Existence of Positive Solution to System of Nonlinear Third-Order Three-Point BVPs
    Sun, Jian-Ping
    Yang, Xue-Mei
    Zhao, Ya-Hong
    JOURNAL OF FUNCTION SPACES, 2016, 2016
  • [7] Nonlinear Sum Operator Equations with a Parameter and Application to Second-Order Three-Point BVPs
    Wang, Wen-Xia
    Liu, Xi-Lan
    Shi, Piao-Piao
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [8] Numerical Solution of Nonlinear Second Order Singular BVPs Based on Green’s Functions and Fixed-Point Iterative Schemes
    Assadi R.
    Khuri S.A.
    Sayfy A.
    International Journal of Applied and Computational Mathematics, 2018, 4 (6)
  • [9] On fixed-point approximations for a class of nonlinear mappings based on the JK iterative scheme with application
    Ahmad, Junaid
    Ullah, Kifayat
    Hammad, Hasanen A.
    George, Reny
    AIMS MATHEMATICS, 2023, 8 (06): : 13663 - 13679
  • [10] An iterative ∈-optimal control scheme for a class of discrete-time nonlinear systems with unfixed initial state
    Wei, Qinglai
    Liu, Derong
    NEURAL NETWORKS, 2012, 32 : 236 - 244