CENSORING;
COX REGRESSION;
FAILURE TIME DATA;
FORTRAN;
LACK OF FIT;
MODEL MISSPECIFICATION;
SURVIVAL ANALYSIS;
D O I:
10.1016/0169-2607(92)90080-Q
中图分类号:
TP39 [计算机的应用];
学科分类号:
081203 ;
0835 ;
摘要:
GOFCOX is a user-friendly FORTRAN program for assessing the adequacy of the Cox proportional hazards model. The underlying methodology is based on the comparison of the maximum partial likelihood estimator and a weighted parameter estimator. The latter is the root to an estimation equation that assigns varying weights to the individual contributions to the partial likelihood score function. The weighted and unweighted parameter estimators have the same expectation under the Cox model, but tend to differ when the model is inappropriate. The GOFCOX program computes a rich class of weighted parameter estimators and corresponding goodness-of-fit test statistics. The program runs on both mainframe computers and microcomputers. The running time is minimal even for large data sets. A simple example is provided to illustrate the features of the program.
机构:
North West Univ, Unit Business Math & Informat, Potchefstroom, South Africa
Natl & Kapodistrian Univ Athens, Dept Econ, Athens, GreeceNorth West Univ, Unit Business Math & Informat, Potchefstroom, South Africa
Meintanis, Simos George
Allison, James S.
论文数: 0引用数: 0
h-index: 0
机构:
North West Univ, Unit Business Math & Informat, Potchefstroom, South AfricaNorth West Univ, Unit Business Math & Informat, Potchefstroom, South Africa
机构:
Yale Univ, Sch Publ Hlth, Div Biostat, New Haven, CT 06520 USA
Coordinating Ctr, VA Cooperat Studies Program, West Haven, CT 06516 USAYale Univ, Sch Publ Hlth, Div Biostat, New Haven, CT 06520 USA
Zhou, Bingqing
Fine, Jason
论文数: 0引用数: 0
h-index: 0
机构:
Univ N Carolina, Dept Biostat, Chapel Hill, NC 27599 USA
Univ N Carolina, Dept Stat, Chapel Hill, NC 27599 USAYale Univ, Sch Publ Hlth, Div Biostat, New Haven, CT 06520 USA
Fine, Jason
Laird, Glen
论文数: 0引用数: 0
h-index: 0
机构:
Bristol Myers Squibb Co, Wallingford, CT 06492 USAYale Univ, Sch Publ Hlth, Div Biostat, New Haven, CT 06520 USA