EXACTNESS OF SUPERSYMMETRIC WKB SPECTRA FOR SHAPE-INVARIANT POTENTIALS

被引:158
|
作者
DUTT, R [1 ]
KHARE, A [1 ]
SUKHATME, UP [1 ]
机构
[1] UNIV ILLINOIS,DEPT PHYS,CHICAGO,IL 60680
关键词
D O I
10.1016/0370-2693(86)90049-3
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
引用
收藏
页码:295 / 298
页数:4
相关论文
共 50 条
  • [1] Exactness of supersymmetric WKB method for translational shape invariant potentials
    Cheng, KM
    Leung, PT
    Pang, CS
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (18): : 5045 - 5060
  • [2] SUPERSYMMETRIC PARTNERS AND SHAPE-INVARIANT POTENTIALS
    RAJPUT, BS
    [J]. INDIAN JOURNAL OF PURE & APPLIED PHYSICS, 1995, 33 (05) : 283 - 284
  • [3] BERRY PHASE FOR SUPERSYMMETRIC SHAPE-INVARIANT POTENTIALS
    BHAUMIK, D
    DUTTAROY, B
    BAGCHI, BK
    KHARE, A
    [J]. PHYSICS LETTERS A, 1994, 193 (01) : 11 - 14
  • [4] Barrier penetration for supersymmetric shape-invariant potentials
    Aleixo, ANF
    Balantekin, AB
    Ribeiro, MAC
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (08): : 1503 - 1518
  • [5] NEW SHAPE-INVARIANT POTENTIALS IN SUPERSYMMETRIC QUANTUM-MECHANICS
    KHARE, A
    SUKHATME, UP
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (18): : L901 - L904
  • [6] Application of supersymmetric WKB method to cyclic shape invariant potentials
    Lau, H. K.
    Leung, P. T.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (07)
  • [7] SCATTERING-AMPLITUDES FOR SUPERSYMMETRIC SHAPE-INVARIANT POTENTIALS BY OPERATOR METHODS
    KHARE, A
    SUKHATME, UP
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (09): : L501 - L508
  • [8] The supersymmetric WKB formalism is not exact for all additive shape invariant potentials
    Bougie, Jonathan
    Gangopadhyaya, Asim
    Rasinariu, Constantin
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2018, 51 (37)
  • [9] PROPAGATORS FOR SHAPE-INVARIANT POTENTIALS
    DAS, A
    HUANG, WJ
    [J]. PHYSICAL REVIEW D, 1990, 41 (10): : 3241 - 3247
  • [10] Unified Supersymmetric Description of Shape-Invariant Potentials within and beyond the Natanzon Class
    Soltesz, Tibor
    Petho, Levente Ferenc
    Levai, Geza
    [J]. SYMMETRY-BASEL, 2024, 16 (02):