COMPOSITION ALGEBRAS OVER ALGEBRAIC-CURVES OF GENUS ZERO

被引:40
|
作者
PETERSSON, HP
机构
关键词
D O I
10.2307/2154334
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We rephrase the classical theory of composition algebras over fields, particularly the Cayley-Dickson Doubling Process and Zorn's Vector Matrices, in the setting of locally ringed spaces. Fixing an arbitrary base field, we use these constructions to classify composition algebras over (complete smooth) curves of genus zero. Applications are given to composition algebras over function fields of genus zero and polynomial rings.
引用
收藏
页码:473 / 493
页数:21
相关论文
共 50 条