INDEX AND TOTAL CURVATURE OF SURFACES WITH CONSTANT MEAN-CURVATURE

被引:8
|
作者
DOCARMO, MP
DASILVEIRA, AM
机构
关键词
D O I
10.2307/2047750
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove an analogue, for surfaces with constant mean curvature in hyperbolic space, of a theorem of Fischer-Colbrie and Gulliver about minimal surfaces in Euclidean space. That is, for a complete surface M2 in hyperbolic 3-space with constant mean curvature 1, the (Morse) index of the operator L = delta - 2K is finite if and only if the total Gaussian curvature is finite.
引用
收藏
页码:1009 / 1015
页数:7
相关论文
共 50 条