ASYMPTOTICS OF BLOWUP FOR WEAKLY QUASI-LINEAR PARABOLIC PROBLEMS

被引:8
|
作者
BEBERNES, J
BRICHER, S
GALAKTIONOV, VA
机构
[1] KELDYSH INST APPL MATH,125047 MOSCOW,RUSSIA
[2] UNIV AUTONOMA MADRID,DEPT MATH,E-28049 MADRID,SPAIN
[3] HERIOT WATT UNIV,DEPT MATH,EDINBURGH EH14 4AS,MIDLOTHIAN,SCOTLAND
关键词
QUASI-LINEAR HEAT EQUATION; NONLINEAR SOURCE TERM; BLOWUP; ASYMPTOTIC BEHAVIOR OF SOLUTIONS;
D O I
10.1016/0362-546X(94)90091-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
[No abstract available]
引用
收藏
页码:489 / 514
页数:26
相关论文
共 50 条
  • [1] Bounds for the blowup time of the solutions to quasi-linear parabolic problems
    Aiguo Bao
    Xianfa Song
    Zeitschrift für angewandte Mathematik und Physik, 2014, 65 : 115 - 123
  • [2] Bounds for the blowup time of the solutions to quasi-linear parabolic problems
    Bao, Aiguo
    Song, Xianfa
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2014, 65 (01): : 115 - 123
  • [3] A CLASS OF PARABOLIC QUASI-LINEAR PROBLEMS
    ARTOLA, M
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1986, 5B (01): : 51 - 70
  • [4] Lower bound for the blowup time of the solution to a quasi-linear parabolic system
    Bao, Aiguo
    Song, Xianfa
    JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (12)
  • [5] The lower bound for the blowup time of the solution to a quasi-linear parabolic problem
    An, Xiaowei
    Song, Xianfa
    APPLIED MATHEMATICS LETTERS, 2017, 69 : 82 - 86
  • [6] Nash equilibria for quasi-linear parabolic problems
    Oblitas, Orlando Noel Romero
    Ferrel, Juan Bautista Limaco
    de Carvalho, Pitagoras Pinheiro
    COMPUTATIONAL & APPLIED MATHEMATICS, 2024, 43 (03):
  • [7] UNILATERAL PROBLEMS FOR PARABOLIC QUASI-LINEAR OPERATORS
    ROZHKOVSKAIA, TN
    DOKLADY AKADEMII NAUK SSSR, 1986, 290 (03): : 549 - 552
  • [8] Nash equilibria for quasi-linear parabolic problems
    Orlando Noél Romero Oblitas
    Juan Bautista Límaco Ferrel
    Pitágoras Pinheiro de Carvalho
    Computational and Applied Mathematics, 2024, 43
  • [9] GEOMETRIC BLOWUP FOR QUASI-LINEAR SYSTEMS
    ALINHAC, S
    AMERICAN JOURNAL OF MATHEMATICS, 1995, 117 (04) : 987 - 1017