A NEW THEOREM TO FIND BERGE EQUILIBRIA

被引:14
|
作者
Musy, Olivier [1 ]
Pottier, Antonin [2 ]
Tazdait, Tarik [2 ]
机构
[1] Univ Paris Ouest Nanterre Def, Econ, 200 Ave Republique, F-92001 Nanterre, France
[2] Ecole Ponts ParisTech, CIRED CNRS EHESS, F-94736 Nogent Sur Marne, France
关键词
Berge equilibrium; Nash equilibrium; mutual support;
D O I
10.1142/S0219198912500053
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper examines the existence of Berge equilibrium. Colman et al. provide a theorem on the existence of this type of equilibrium in the paper [Colman, A.M., Korner, T.W., Musy, O. and Tazdait, T. [2011] Mutual support in games: Some properties of Berge equilibria, J. Math. Psychol. 55, 166-175]. This theorem has been demonstrated on the basis of a correspondence with Nash equilibrium. We propose to restate this theorem without using Nash equilibrium, and deduce a method for the computation of Berge equilibria.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Berge equilibria and the equilibria of the altruistic game
    Zapata, A.
    Marmol, A. M.
    Monroy, L.
    TOP, 2024, 32 (01) : 83 - 105
  • [2] Berge equilibria and the equilibria of the altruistic game
    A. Zapata
    A. M. Mármol
    L. Monroy
    TOP, 2024, 32 : 83 - 105
  • [3] A note on the existence of Berge and Berge-Nash equilibria
    Larbani, Moussa
    Nessah, Rabia
    MATHEMATICAL SOCIAL SCIENCES, 2008, 55 (02) : 258 - 271
  • [4] Inverse of the Berge maximum theorem
    Komiya, H
    ECONOMIC THEORY, 1997, 9 (02) : 371 - 375
  • [5] Inverse of the Berge maximum theorem
    Komiya H.
    Economic Theory, 1997, 9 (2) : 371 - 375
  • [6] Intersection theorems and their applications to Berge equilibria
    Abalo, Kokou Y.
    Kostreva, Michael M.
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 182 (02) : 1840 - 1848
  • [7] Evolutionary Detection of Berge and Nash Equilibria
    Gasko, Noemi
    Dumitrescu, D.
    Lung, Rodica Ioana
    NATURE INSPIRED COOPERATIVE STRATEGIES FOR OPTIMIZATION (NICSO 2011), 2011, 387 : 149 - 158
  • [8] Some existence theorems of Nash and Berge equilibria
    Abalo, KY
    Kostreva, MM
    APPLIED MATHEMATICS LETTERS, 2004, 17 (05) : 569 - 573
  • [9] Example of a Finite Game with No Berge Equilibria at All
    Pykacz, Jaroslaw
    Bytner, Pawel
    Frackiewicz, Piotr
    GAMES, 2019, 10 (01):
  • [10] BERGE-ZHUKOVSKII EQUILIBRIA: EXISTENCE AND CHARACTERIZATION
    Nessah, Rabia
    Larbani, Moussa
    INTERNATIONAL GAME THEORY REVIEW, 2014, 16 (04)