PROBABILISTIC-INTERPRETATION OF A SYSTEM OF QUASI-LINEAR ELLIPTIC PARTIAL-DIFFERENTIAL EQUATIONS UNDER NEUMANN BOUNDARY-CONDITIONS

被引:23
|
作者
HU, Y
机构
[1] Institut de Mathématiques et Informatique, Université Claude Bernard - Lyon I, Villeurbanne
关键词
REFLECTING BROWNIAN MOTION; LOCAL TIME; BACKWARD STOCHASTIC DIFFERENTIAL EQUATION; NEUMANN BOUNDARY CONDITION;
D O I
10.1016/0304-4149(93)90109-H
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A probabilistic interpretation of a system of second order quasilinear elliptic partial differential equations under a Neumann boundary condition is obtained by introducing a kind of backward stochastic differential equations in the infinite horizon case. In the same time, a simple proof for the existence and uniqueness result of the classical solution of that Neumann problem is given.
引用
收藏
页码:107 / 121
页数:15
相关论文
共 50 条