REAL-TIME CONTROL OF A TOKAMAK PLASMA USING NEURAL NETWORKS

被引:21
|
作者
BISHOP, CM [1 ]
HAYNES, PS [1 ]
SMITH, MEU [1 ]
TODD, TN [1 ]
TROTMAN, DL [1 ]
机构
[1] AEA TECHNOL,CULHAM LAB,ABINGDON OX14 3DB,OXON,ENGLAND
关键词
D O I
10.1162/neco.1995.7.1.206
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we present results from the first use of neural networks for real-time control of the high-temperature plasma in a tokamak fusion experiment. The tokamak is currently the principal experimental device for research into the magnetic confinement approach to controlled fusion. In an effort to improve the energy confinement properties of the high-temperature plasma inside tokamaks, recent experiments have focused on the use of noncircular cross-sectional plasma shapes. However, the accurate generation of such plasmas represents a demanding problem involving simultaneous control of several parameters on a time scale as short as a few tens of microseconds. Application of neural networks to this problem requires fast hardware, for which we have developed a fully parallel custom implementation of a multilayer perceptron, based on a hybrid of digital and analogue techniques.
引用
收藏
页码:206 / 217
页数:12
相关论文
共 50 条
  • [1] Real-time flow control using neural networks
    Chan, HL
    Rad, AB
    [J]. ISA TRANSACTIONS, 2000, 39 (01) : 93 - 101
  • [2] Real-time software for the COMPASS tokamak plasma control
    Valcarcel, D. F.
    Duarte, A. S.
    Neto, A.
    Carvalho, I. S.
    Carvalho, B. B.
    Fernandes, H.
    Sousa, J.
    Sartori, F.
    Janky, F.
    Cahyna, P.
    Hron, M.
    Panek, R.
    [J]. FUSION ENGINEERING AND DESIGN, 2010, 85 (3-4) : 470 - 473
  • [3] Plasma density control in real-time on the COMPASS tokamak
    Janky, F.
    Hron, M.
    Havlicek, J.
    Varavin, M.
    Zacek, F.
    Seidl, J.
    Panek, R.
    [J]. FUSION ENGINEERING AND DESIGN, 2015, 96-97 : 637 - 640
  • [4] Modified neural networks for rapid recovery of tokamak plasma parameters for real time control
    Sengupta, A
    Ranjan, P
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2002, 73 (07): : 2566 - 2577
  • [5] Neural networks for real-time control
    Narendra, KS
    [J]. PROCEEDINGS OF THE 36TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 1997, : 1026 - 1031
  • [6] Real-Time Motor Control using Recurrent Neural Networks
    Huh, Dongsung
    Todorov, Emanuel
    [J]. ADPRL: 2009 IEEE SYMPOSIUM ON ADAPTIVE DYNAMIC PROGRAMMING AND REINFORCEMENT LEARNING, 2009, : 42 - 49
  • [7] Plasma models for real-time control of advanced tokamak scenarios
    Moreau, D.
    Mazon, D.
    Walker, M. L.
    Ferron, J. R.
    Burrell, K. H.
    Flanagan, S. M.
    Gohil, P.
    Groebner, R. J.
    Hyatt, A. W.
    La Haye, R. J.
    Lohr, J.
    Turco, F.
    Schuster, E.
    Ou, Y.
    Xu, C.
    Takase, Y.
    Sakamoto, Y.
    Ide, S.
    Suzuki, T.
    [J]. NUCLEAR FUSION, 2011, 51 (06)
  • [8] Real-time plasma control tools for advanced tokamak operation
    Varandas, C. A. F.
    Sousa, J.
    Rodrigues, A. P.
    Carvalho, B. B.
    Fernandes, H.
    Batista, A. J.
    Cruz, N.
    Combo, A.
    Pereira, R. C.
    [J]. PLASMA AND FUSION SCIENCE, 2006, 875 : 385 - +
  • [9] Development of real-time plasma analysis and control algorithms for the TCV tokamak using SIMULINK
    Felici, F.
    Le, H. B.
    Paley, J. I.
    Duval, B. P.
    Coda, S.
    Moret, J. -M.
    Bortolon, A.
    Federspiel, L.
    Goodman, T. P.
    Hommen, G.
    Karpushov, A.
    Piras, F.
    Pitzschke, A.
    Romero, J.
    Sevillano, G.
    Sauter, O.
    Vijvers, W.
    [J]. FUSION ENGINEERING AND DESIGN, 2014, 89 (03) : 165 - 176
  • [10] Real-time control of manufacturing cells using dynamic neural networks
    Rovithakis, GA
    Gaganis, VI
    Perrakis, SE
    Christodoulou, MA
    [J]. AUTOMATICA, 1999, 35 (01) : 139 - 149