CHAOTIC INTERFACE DYNAMICS - A MODEL WITH TURBULENT BEHAVIOR

被引:2
|
作者
BOHR, T
GRINSTEIN, G
JAYAPRAKASH, C
JENSEN, MH
MUKAMEL, D
机构
[1] IBM CORP, THOMAS J WATSON RES CTR, YORKTOWN HTS, NY 10598 USA
[2] NORDITA, DK-2100 COPENHAGEN, DENMARK
[3] OHIO STATE UNIV, DEPT PHYS, COLUMBUS, OH 43210 USA
[4] WEIZMANN INST SCI, DEPT PHYS, IL-76100 REHOVOT, ISRAEL
关键词
D O I
10.1103/PhysRevA.46.4791
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We explore the similarities between the dynamics of rough interfaces and fully developed hydrodynamical turbulence. In particular, we introduce a simple system of coupled mappings that (1) is chaotic with an attractor whose dimension grows proportionally to the system size, (2) generates small-scale structure, and (3) has structure functions that grow as power laws. We discuss the universality classes that determine the large-distance long-time behavior by computing the exponents for the scaling of the interface width.
引用
收藏
页码:4791 / 4796
页数:6
相关论文
共 50 条
  • [1] Chaotic behavior in a model for grain dynamics
    Vasconcelos, GL
    Cunha-Jr, FV
    Veerman, JJP
    PHYSICA A, 2001, 295 (1-2): : 261 - 267
  • [2] TURBULENT DYNAMICS OF AN INTRINSICALLY CHAOTIC FIELD
    ABRAHAM, FF
    PHYSICAL REVIEW E, 1994, 49 (05): : 3703 - 3708
  • [3] Turbulence dynamics near a turbulent/non-turbulent interface
    Teixeira, M. A. C.
    da Silva, C. B.
    JOURNAL OF FLUID MECHANICS, 2012, 695 : 257 - 287
  • [4] TRANSITION TO CHAOTIC BEHAVIOR IN A SIMPLE INTEGRAL MODEL OF POPULATION-DYNAMICS
    TUZINKEVICH, AV
    USSR COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 1989, 29 (02): : 196 - 200
  • [5] Nonlinear dynamics of simple shell model with chaotic snapping behavior - Closure
    Greer, JM
    Palazotto, AN
    JOURNAL OF ENGINEERING MECHANICS-ASCE, 1997, 123 (01): : 96 - 96
  • [6] NONLINEAR DYNAMICS OF SIMPLE SHELL-MODEL WITH CHAOTIC SNAPPING BEHAVIOR
    GREER, JM
    PALAZOTTO, AN
    JOURNAL OF ENGINEERING MECHANICS-ASCE, 1995, 121 (06): : 753 - 761
  • [7] TURBULENT AND CHAOTIC DYNAMICS UNDERLYING SOLAR MAGNETIC VARIABILITY
    LAWRENCE, JK
    CADAVID, AC
    RUZMAIKIN, AA
    ASTROPHYSICAL JOURNAL, 1995, 455 (01): : 366 - 375
  • [8] CHAOTIC BEHAVIOR OF DETERMINISTIC ORBITS - PROBLEM OF TURBULENT PHASE
    TOMITA, K
    KAI, T
    SUPPLEMENT OF THE PROGRESS OF THEORETICAL PHYSICS, 1978, (64): : 280 - 294
  • [9] CHAOTIC CASCADE MODEL FOR TURBULENT VELOCITY DISTRIBUTIONS
    BECK, C
    PHYSICAL REVIEW E, 1994, 49 (05): : 3641 - 3652
  • [10] Simulation of chaotic behavior in population dynamics
    Universidade Federal de Ouro Preto, Ouro Preto, Brazil
    Eur Phys J B, 3 (393-396):