STATIONARY SOLUTION OF A TIME-DEPENDENT DENSITY-MATRIX FORMALISM

被引:17
|
作者
TOHYAMA, M [1 ]
机构
[1] RIKEN,CYCLOTRON LAB,WAKO 35101,JAPAN
来源
PROGRESS OF THEORETICAL PHYSICS | 1994年 / 92卷 / 04期
关键词
D O I
10.1143/PTP.92.905
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A stationary solution of a time-dependent density-matrix formalism, which is an extension of the time-dependent Hartree-Fock theory to include the effects of two-body correlations, is obtained for the Lipkin model hamiltonian, using an adiabatic treatment of the two-body interaction. It is found that the obtained result is a reasonable approximation for the exact solution of the model.
引用
收藏
页码:905 / 908
页数:4
相关论文
共 50 条
  • [1] LANDAU COLLISION TERM IN TIME-DEPENDENT DENSITY-MATRIX FORMALISM
    TOHYAMA, M
    [J]. ZEITSCHRIFT FUR PHYSIK A-HADRONS AND NUCLEI, 1990, 335 (04): : 413 - 416
  • [2] Quadrupole resonances in unstable oxygen isotopes in time-dependent density-matrix formalism
    Tohyama, M
    Umar, AS
    [J]. PHYSICS LETTERS B, 2002, 549 (1-2) : 72 - 78
  • [3] Quadrupole resonances in unstable oxygen isotopes in time-dependent density-matrix formalism
    Tohyama, M
    Umar, AS
    [J]. FRONTIERS OF COLLECTIVE MOTIONS (CM2002), 2003, : 242 - 247
  • [4] Eigenstates of the time-dependent density-matrix theory
    M. Tohyama
    P. Schuck
    [J]. The European Physical Journal A - Hadrons and Nuclei, 2004, 19 : 215 - 220
  • [5] Application of time-dependent density-matrix theory
    Tohyama, M
    Umar, AS
    [J]. NONEQUILIBRIUM AND NONLINEAR DYNAMICS IN NUCLEAR AND OTHER FINITE SYSTEMS, 2001, 597 : 258 - 265
  • [6] INVERSE PROBLEM FOR THE TIME-DEPENDENT DENSITY-MATRIX
    FRISCH, HL
    RUJAN, P
    [J]. PHYSICAL REVIEW A, 1982, 25 (04): : 1815 - 1819
  • [7] Applications of Time-Dependent Density-Matrix Approach
    Tohyama, Mitsuru
    [J]. FRONTIERS IN PHYSICS, 2020, 8
  • [8] Eigenstates of the time-dependent density-matrix theory
    Tohyama, M
    Schuck, P
    [J]. EUROPEAN PHYSICAL JOURNAL A, 2004, 19 (02): : 215 - 220
  • [9] TIME-DEPENDENT VARIATIONAL PRINCIPLE FOR NONEQUILIBRIUM DENSITY-MATRIX
    ICHIYANAGI, M
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1988, 57 (12) : 4106 - 4113
  • [10] Truncation scheme of time-dependent density-matrix approach
    Tohyama, Mitsuru
    Schuck, Peter
    [J]. EUROPEAN PHYSICAL JOURNAL A, 2014, 50 (04): : 1 - 8