Development of a Multiobjective Optimization Algorithm Using Data Distribution Characteristics

被引:0
|
作者
Hwang, In Jin [1 ]
Park, Gyung Jin [1 ]
机构
[1] Hanyang Univ, Dept Mech Engn, Seoul, South Korea
关键词
Mahalanobis Distance; Skewed Mahalanobis Distance; Weighting Method; Goal Programming; Standard Deviation;
D O I
10.3795/KSME-A.2010.34.12.1793
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The weighting method and goal programming require weighting factors or target values to obtain a Pareto optimal solution. However, it is difficult to define these parameters, and a Pareto solution is not guaranteed when the choice of the parameters is incorrect. Recently, the Mahalanobis Taguchi System (MTS) has been introduced to minimize the Mahalanobis distance (MD). However, the MTS method cannot obtain a Pareto optimal solution. We propose a function called the skewed Mahalanobis distance (SMD) to obtain a Pareto optimal solution while retaining the advantages of the MD. The SMD is a new distance scale that multiplies the skewed value of a design point by the MD. The weighting factors are automatically reflected when the SMD is calculated. The SMD always gives a unique Pareto optimal solution. To verify the efficiency of the SMD, we present two numerical examples and show that the SMD can obtain a unique Pareto optimal solution without any additional information.
引用
收藏
页码:1793 / 1803
页数:11
相关论文
共 50 条
  • [1] Multiobjective Optimization of Molded LDPE Foams Characteristics Using Genetic Algorithm
    Chedly, S.
    Chettah, A.
    Ichchou, M. N.
    JOURNAL OF APPLIED POLYMER SCIENCE, 2009, 114 (01) : 358 - 368
  • [2] Genetic algorithm development for multiobjective optimization of structures
    Cheng, FY
    Li, D
    AIAA JOURNAL, 1998, 36 (06) : 1105 - 1112
  • [3] Multiobjective structural optimization using a microgenetic algorithm
    C.A. Coello Coello
    G.T. Pulido
    Structural and Multidisciplinary Optimization, 2005, 30 : 388 - 403
  • [4] Multiobjective structural optimization using a microgenetic algorithm
    Coello, CAC
    Pulido, GT
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2005, 30 (05) : 388 - 403
  • [5] Evolutionary multiobjective optimization using a cultural algorithm
    Coello, CAC
    Becerra, RL
    PROCEEDINGS OF THE 2003 IEEE SWARM INTELLIGENCE SYMPOSIUM (SIS 03), 2003, : 6 - 13
  • [6] A multicast routing algorithm using multiobjective optimization
    Crichigno, J
    Barán, B
    TELECOMMUNICATIONS AND NETWORKING - ICT 2004, 2004, 3124 : 1107 - 1113
  • [7] Multiobjective Optimization for IMRT Using Genetic Algorithm
    Phillips, M.
    Kim, M.
    Ghate, A.
    MEDICAL PHYSICS, 2008, 35 (06)
  • [8] A multiobjective optimization of a catalyst distribution in a methane/steam reforming reactor using a genetic algorithm
    Pajak, Marcin
    Buchaniec, Szymon
    Kimijima, Shinji
    Szmyd, Janusz S.
    Brus, Grzegorz
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (38) : 20183 - 20197
  • [9] Development of a Robust Multiobjective Simulated Annealing Algorithm for Solving Multiobjective Optimization Problems
    Sankararao, B.
    Yoo, Chang Kyoo
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2011, 50 (11) : 6728 - 6742
  • [10] An efficient evolutionary optimization algorithm for multiobjective distribution feeder reconfiguration
    Taher Niknam
    Mokhtar Sha Sadeghi
    International Journal of Control, Automation and Systems, 2011, 9 : 112 - 117