ON THE FACE PAIR OF CUBIC PLANAR GRAPHS

被引:0
|
作者
CAMPBELL, CM
STATON, W
机构
[1] MILLSAPS COLL,JACKSON,MS 39210
[2] UNIV MISSISSIPPI,UNIVERSITY,MS 38677
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For an r-regular plane graph G, the face pair is (omega, epsilon) if omega and epsilon are respectively the lengths of shortest odd and even faces of G. We investigate the size of smallest cubic plane graphs with given face pair.
引用
收藏
页码:145 / 153
页数:9
相关论文
共 50 条
  • [1] The face pair of planar graphs
    Yang Yuansheng
    Lin Xiaohui
    Qiao Jing
    [J]. DISCRETE MATHEMATICS, 2006, 306 (15) : 1742 - 1757
  • [2] Face extensions in planar cubic graphs
    Kilakos, K
    Shepherd, FB
    [J]. DISCRETE MATHEMATICS, 1998, 181 (1-3) : 179 - 191
  • [3] Hamiltonicity of Cubic Planar Graphs with Bounded Face Sizes
    Kardos, Frantisek
    [J]. SIAM REVIEW, 2022, 64 (02) : 425 - 465
  • [4] Decomposing planar cubic graphs
    Hoffmann-Ostenhof, Arthur
    Kaiser, Tomas
    Ozeki, Kenta
    [J]. JOURNAL OF GRAPH THEORY, 2018, 88 (04) : 631 - 640
  • [5] Cubic Augmentation of Planar Graphs
    Hartmann, Tanja
    Rollin, Jonathan
    Rutter, Ignaz
    [J]. ALGORITHMS AND COMPUTATION, ISAAC 2012, 2012, 7676 : 402 - 412
  • [6] A CHARACTERIZATION OF PLANAR CUBIC GRAPHS
    LITTLE, CHC
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 1980, 29 (02) : 185 - 194
  • [7] Random cubic planar graphs
    Bodirsky, Manuel
    Kang, Mihyun
    Loeffler, Mike
    McDiarmid, Colin
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2007, 30 (1-2) : 78 - 94
  • [8] On cubic planar hypohamiltonian and hypotraceable graphs
    Araya, Makoto
    Wiener, Gabor
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2011, 18 (01):
  • [9] Cubic vertices in planar hypohamiltonian graphs
    Zamfirescu, Carol T.
    [J]. JOURNAL OF GRAPH THEORY, 2019, 90 (02) : 189 - 207
  • [10] Perfect matchings in planar cubic graphs
    Chudnovsky, Maria
    Seymour, Paul
    [J]. COMBINATORICA, 2012, 32 (04) : 403 - 424