QUANTUM PHASE-SPACE OF 2-SPIN SYSTEMS

被引:0
|
作者
REGEZ, N
BREYMANN, W
THOMAS, H
机构
来源
HELVETICA PHYSICA ACTA | 1993年 / 66卷 / 04期
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present results of numerical experiments performed on quantum two-spin systems, which permit a direct comparison of quantum and classical invariant structures. Two complementary representations are discussed: Husimi distributions, i. e., the decomposition of stationary states in terms of coherent states, and a second type of distribution which gives a measure of localization of coherent states during time evolution.
引用
收藏
页码:447 / 448
页数:2
相关论文
共 50 条
  • [1] Generalized phase-space techniques to explore quantum phase transitions in critical quantum spin systems
    Millen, N. M.
    Rundle, R. P.
    Samson, J. H.
    Tilma, Todd
    Bishop, R. F.
    Everitt, M. J.
    ANNALS OF PHYSICS, 2023, 458
  • [2] Phase-space formulation of the nonlinear longitudinal relaxation of the magnetization in quantum spin systems
    Kalmykov, Yuri P.
    Coffey, William T.
    Titov, Serguey V.
    PHYSICAL REVIEW E, 2007, 76 (05)
  • [3] PHASE-SPACE ENTROPY AND GLOBAL PHASE-SPACE STRUCTURES OF (CHAOTIC) QUANTUM-SYSTEMS
    MIRBACH, B
    KORSCH, HJ
    PHYSICAL REVIEW LETTERS, 1995, 75 (03) : 362 - 365
  • [4] Phase-space spinor amplitudes for spin-1/2 systems
    Watson, P.
    Bracken, A. J.
    PHYSICAL REVIEW A, 2011, 83 (04):
  • [5] PHASE-SPACE REPRESENTATION FOR GALILEAN QUANTUM PARTICLES OF ARBITRARY SPIN
    GRACIABONDIA, JM
    VARILLY, JC
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (18): : L879 - L883
  • [6] INTEGRABILITY AND NONINTEGRABILITY OF QUANTUM-SYSTEMS .2. DYNAMICS IN QUANTUM PHASE-SPACE
    ZHANG, WM
    FENG, DH
    YUAN, JM
    PHYSICAL REVIEW A, 1990, 42 (12): : 7125 - 7150
  • [7] UNIFICATION OF PHASE-SPACE DESCRIPTIONS OF QUANTUM MARKOVIAN SYSTEMS
    MARBURGER, JH
    LOUISELL, WH
    PHYSICAL REVIEW, 1969, 186 (01): : 174 - +
  • [8] QUANTUM-MECHANICAL PHASE-SPACE - A GENERALIZATION OF WIGNER PHASE-SPACE FORMULATION TO ARBITRARY COORDINATE SYSTEMS
    PIMPALE, A
    RAZAVY, M
    PHYSICAL REVIEW A, 1988, 38 (12) : 6046 - 6054
  • [9] Simulation of the dynamics of many-body quantum spin systems using phase-space techniques
    Ng, Ray
    Sorensen, Erik S.
    Deuar, Piotr
    PHYSICAL REVIEW B, 2013, 88 (14)
  • [10] Phase-space methods for the spin dynamics in condensed matter systems
    Hurst, Jerome
    Hervieux, Paul-Antoine
    Manfredi, Giovanni
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2017, 375 (2092):