ON SEA-ICE TEXTURE CHARACTERIZATION FROM SAR IMAGES

被引:6
|
作者
SHOKR, ME
机构
[1] Atmospheric Environment Service, North York, Ontario M3H 5T4
来源
关键词
SAR; Sea ice; texture;
D O I
10.1109/TGRS.1990.573003
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Automated sea-ice classification from radar images has been identified as one of the prime goals of future sea-ice monitoring programs. The performance of any image-classification scheme depends on the image parameters selected to characterize the existing classes. Therefore a search for parameters that promise strong interpretation capabilities for radar images is a priority at present. This paper reports briefly on a study to evaluate the utility of selected texture parameters, derived directly from the gray level or indirectly via the gray-level co-occurrencematrix (GLCM), for sea-ice classification from SAR images. Two images (one L-band and the other X-band) of winter sea ice were used. The paper shows that texture can be used to identify certain sea-ice classes, particularly multiyear and new ice. Of the six texture parameters investigated, the gray-level variance and the GLCM Entropy and Uniformity seem to be the most significant. © 1990 IEEE
引用
收藏
页码:737 / 740
页数:4
相关论文
共 50 条
  • [1] A MATHEMATICAL APPROACH TO THE SEGMENTATION OF SEA-ICE SAR IMAGES
    KORSNES, R
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 1993, 14 (02) : 313 - 332
  • [2] APPLICATION OF NEURAL NETWORKS FOR SEA-ICE CLASSIFICATION IN POLARIMETRIC SAR IMAGES
    HARA, Y
    ATKINS, RG
    SHIN, RT
    KONG, JA
    YUEH, SH
    KWOK, R
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1995, 33 (03): : 740 - 748
  • [3] An assessment of the reliability of sea-ice motion and deformation retrieval using SAR images
    Linow, Stefanie
    Hollands, Thomas
    Dierking, Wolfgang
    [J]. ANNALS OF GLACIOLOGY, 2015, 56 (69) : 229 - 234
  • [4] Assessing polarimetric SAR sea-ice classifications using consecutive day images
    Moen, M. -A. N.
    Anfinsen, S. N.
    Doulgeris, A. P.
    Renner, A. H. H.
    Gerland, S.
    [J]. ANNALS OF GLACIOLOGY, 2015, 56 (69) : 285 - 294
  • [5] ALEATORIC UNCERTAINTY EMBEDDED TRANSFER LEARNING FOR SEA-ICE CLASSIFICATION IN SAR IMAGES
    Liu, Ying
    Huang, Zhongling
    Han, Junwei
    [J]. 2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 4980 - 4983
  • [6] SAR sea-ice texture classification using discrete wavelet transform based methods
    Yu, QY
    Moloney, C
    Williams, FM
    [J]. IGARSS 2002: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM AND 24TH CANADIAN SYMPOSIUM ON REMOTE SENSING, VOLS I-VI, PROCEEDINGS: REMOTE SENSING: INTEGRATING OUR VIEW OF THE PLANET, 2002, : 3041 - 3043
  • [7] Mapping frazil and pancake sea-ice from SAR imagery
    Baraldi, A
    Parmiggiani, F
    [J]. SAR IMAGE ANALYSIS, MODELING, AND TECHNIQUES III, 2000, 4173 : 144 - 152
  • [8] Classification of sea-ice types in SAR imagery
    Baraldi, A
    Parmiggiani, F
    [J]. NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA C-COLLOQUIA ON PHYSICS, 2001, 24 (01): : 113 - 121
  • [9] Operational SAR Sea-Ice Image Classification
    Ochilov, Shuhratchon
    Clausi, David A.
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2012, 50 (11): : 4397 - 4408
  • [10] Performance of a multiscale correlation algorithm for the estimation of sea-ice drift from SAR images: initial results
    Hollands, Thomas
    Dierking, Wolfgang
    [J]. ANNALS OF GLACIOLOGY, 2011, 52 (57) : 311 - 317