ON THE FISHER INFORMATION FOR THE MEAN OF A GAUSSIAN PROCESS

被引:4
|
作者
PORAT, B
机构
[1] Department of Electrical Engineering, TechnionIsrael Institute of Technology Engineering
关键词
D O I
10.1109/78.403374
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
An approximate formula for the Fisher information matrix of a Gaussian process has recently been proposed, for the case of nonzero, parametrically modeled mean. Here, we show that the relative error in the approximation is not guaranteed to converge to zero as the number of measurements tends to infinity. Therefore, the formula cannot be regarded as a valid approximation in general.
引用
收藏
页码:2033 / 2035
页数:3
相关论文
共 50 条
  • [1] Convexity of Fisher Information with Respect to Gaussian Perturbation
    Cheng, Fan
    Geng, Yanlin
    [J]. 2014 IRAN WORKSHOP ON COMMUNICATION AND INFORMATION THEORY (IWCIT), 2014,
  • [2] Fisher information under Gaussian quadrature models
    Marques da Silva Junior, Antonio Hermes
    Einbeck, Jochen
    Craig, Peter S.
    [J]. STATISTICA NEERLANDICA, 2018, 72 (02) : 74 - 89
  • [3] On fisher's information contained in the sample mean
    Nagaev A.V.
    [J]. Journal of Mathematical Sciences, 1998, 92 (4) : 4044 - 4050
  • [4] An Alternative Proof For the Minimum Fisher Information of Gaussian Distribution
    Pak, A.
    [J]. JOURNAL OF APPLIED MATHEMATICS STATISTICS AND INFORMATICS, 2018, 14 (02) : 5 - 10
  • [5] ON ESTIMATING THE MEAN FUNCTION OF A GAUSSIAN PROCESS
    ANILKUMAR, P
    [J]. STATISTICS & PROBABILITY LETTERS, 1994, 19 (01) : 77 - 84
  • [6] A SIEVE ESTIMATOR FOR THE MEAN OF A GAUSSIAN PROCESS
    BEDER, JH
    [J]. ANNALS OF STATISTICS, 1987, 15 (01): : 59 - 78
  • [7] ASYMPTOTIC EXPANSIONS OF THE FISHER INFORMATION IN A SAMPLE-MEAN
    LLOYD, CJ
    [J]. STATISTICS & PROBABILITY LETTERS, 1991, 11 (02) : 133 - 137
  • [8] Complexity of mixed Gaussian states from Fisher information geometry
    Di Giulio, Giuseppe
    Tonni, Erik
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (12)
  • [9] Complexity of mixed Gaussian states from Fisher information geometry
    Giuseppe Di Giulio
    Erik Tonni
    [J]. Journal of High Energy Physics, 2020
  • [10] Fisher information and entanglement of non-Gaussian spin states
    Strobel, Helmut
    Muessel, Wolfgang
    Linnemann, Daniel
    Zibold, Tilman
    Hume, David B.
    Pezze, Luca
    Smerzi, Augusto
    Oberthaler, Markus K.
    [J]. SCIENCE, 2014, 345 (6195) : 424 - 427