SUPERFREEZING IN NONLINEAR OSCILLATORS

被引:4
|
作者
ALABISO, C [1 ]
CASARTELLI, M [1 ]
SCOTTI, A [1 ]
机构
[1] UNIV PARMA,DEPARTIMENTO FIS,I-43100 PARMA,ITALY
关键词
D O I
10.1016/0375-9601(90)90450-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A model of nonlinear oscillators related to classical electrodynamics is studied. Using an indicator based on the energy exchange of harmonic modes, it is possible to establish that equipartition of energy and equipartitions of exchanges go hand inhand: this entails a phenomenon of quasi-harmonic behavior of high modes which we call "superfreezing". Comparisons with similar experiments on other models where superfreezing does not occur, seem to indicate the kind of nonlinear coupling and the shape of the spectrum as responsible for this phenomenon. © 1990.
引用
收藏
页码:292 / 296
页数:5
相关论文
共 50 条
  • [1] Nonlinear harmonic oscillators
    Calogero, V
    Inozemtsev, VI
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (48): : 10365 - 10375
  • [2] ON THE CONTROL OF NONLINEAR OSCILLATORS
    HUBLER, A
    REISER, G
    LUSCHER, E
    HELVETICA PHYSICA ACTA, 1987, 60 (02): : 226 - 229
  • [3] RESONANCES OF NONLINEAR OSCILLATORS
    WARGITSCH, C
    HUBLER, A
    PHYSICAL REVIEW E, 1995, 51 (02): : 1508 - 1519
  • [4] STOCHASTIC NONLINEAR OSCILLATORS
    MARKUS, L
    WEERASINGHE, A
    ADVANCES IN APPLIED PROBABILITY, 1993, 25 (03) : 649 - 666
  • [5] NOISE IN NONLINEAR OSCILLATORS
    GARSTENS, MA
    JOURNAL OF APPLIED PHYSICS, 1957, 28 (03) : 352 - 356
  • [6] Asymmetric nonlinear oscillators
    Fabry, C
    Fonda, A
    NONLINEAR ANALYSIS AND ITS APPLICATIONS TO DIFFERENTIAL EQUATIONS, 2001, 43 : 253 - 256
  • [7] Amplitude death in nonlinear oscillators with nonlinear coupling
    Prasad, Awadhesh
    Dhamala, Mukeshwar
    Adhikari, Bhim Mani
    Ramaswamy, Ramakrishna
    PHYSICAL REVIEW E, 2010, 81 (02)
  • [8] A NONLINEAR SCALES METHOD FOR STRONGLY NONLINEAR OSCILLATORS
    XU, Z
    CHEUNG, YK
    NONLINEAR DYNAMICS, 1995, 7 (03) : 285 - 299
  • [9] Nonlinear resonances of hysteretic oscillators
    Casini, Paolo
    Vestroni, Fabrizio
    ACTA MECHANICA, 2018, 229 (02) : 939 - 952
  • [10] On the periodic solutions of the nonlinear oscillators
    Ebaid, Abdelhalim
    Momani, Shaher
    Chang, Shih-Hsiang
    Aljoufi, Mona D.
    JOURNAL OF VIBROENGINEERING, 2014, 16 (01) : 1 - 14