FOLLMER-SCHWEIZER DECOMPOSITION AND MEAN-VARIANCE HEDGING FOR GENERAL CLAIMS

被引:47
|
作者
MONAT, P
STRICKER, C
机构
来源
ANNALS OF PROBABILITY | 1995年 / 23卷 / 02期
关键词
SEMIMARTINGALES; STOCHASTIC INTEGRALS; FOLLMER-SCHWEIZER DECOMPOSITION; KUNITA-WATANABE DECOMPOSITION; ORTHOGONAL MARTINGALES;
D O I
10.1214/aop/1176988281
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let X be an R(d)-valued special semimartingale on a probability space (Omega,F,(F-t)(0 less than or equal to t less than or equal to T), P) with decomposition X = X(0) + M + A and Theta the space of all predictable, X-integrable processes theta such that integral theta dX is in the space P-2 of semimartingales. If H is a random variable in L(2), We prove, under additional assumptions on the process X, that H can be written as the sum of an F-0-measurable random variable H-0, a stochastic integral of X and a martingale part orthogonal to M. Moreover, this decomposition is unique and the function mapping H with its decomposition is continuous with respect to the L(2)-norm. Finally, we deduce from this continuity that the subspace of L(2) generated by integral theta dX, where theta epsilon Theta, is closed in L(2), and we give some applications of this result to financial mathematics.
引用
收藏
页码:605 / 628
页数:24
相关论文
共 50 条
  • [1] The Follmer-Schweizer decomposition
    Monat, P
    Stricker, C
    [J]. STOCHASTIC PROCESSES AND RELATED TOPICS, 1996, 10 : 77 - 89
  • [2] The Follmer-Schweizer decomposition: Comparison and description
    Choulli, Tahir
    Vandaele, Nele
    Vanmaele, Michele
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2010, 120 (06) : 853 - 872
  • [3] The Follmer-Schweizer decomposition under incomplete information
    Ceci, Claudia
    Colaneri, Katia
    Cretarola, Alessandra
    [J]. STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC REPORTS, 2017, 89 (08): : 1166 - 1200
  • [4] ON THE MINIMAL MARTINGALE MEASURE AND THE FOLLMER-SCHWEIZER DECOMPOSITION
    SCHWEIZER, M
    [J]. STOCHASTIC ANALYSIS AND APPLICATIONS, 1995, 13 (05) : 573 - 599
  • [5] FOLLMER-SCHWEIZER DECOMPOSITION AND CLOSEDNESS OF G(T)(THETA)
    MONAT, P
    STRICKER, C
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1994, 318 (06): : 573 - 576
  • [6] Mean-Variance Hedging for General Claims in an Incomplete Market: Numeraire Method
    王桂兰
    叶中行
    [J]. Journal of Shanghai Jiaotong University(Science), 2003, (02) : 175 - 178
  • [7] Stability and asymptotic analysis of the Follmer-Schweizer decomposition on a finite probability space
    Boese, Sarah
    Cui, Tracy
    Johnston, Samuel
    Vega-Molino, Sylvie
    Mostovyi, Oleksii
    [J]. INVOLVE, A JOURNAL OF MATHEMATICS, 2020, 13 (04): : 607 - 623
  • [8] Mean-variance hedging of contingent claims with random maturity
    Kladivko, Kamil
    Zervos, Mihail
    [J]. MATHEMATICAL FINANCE, 2023, 33 (04) : 1213 - 1247
  • [9] On the structure of general mean-variance hedging strategies
    Cerny, Ales
    Kallsen, Jan
    [J]. ANNALS OF PROBABILITY, 2007, 35 (04): : 1479 - 1531
  • [10] Mean-variance hedging and numeraire
    Gourieroux, C
    Laurent, JP
    Pham, H
    [J]. MATHEMATICAL FINANCE, 1998, 8 (03) : 179 - 200