ORBIT DEORBIT ANALYSIS FOR A MARS ROVER AND SAMPLE RETURN MISSION

被引:0
|
作者
PENZO, PA
机构
[1] Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA
基金
美国国家航空航天局;
关键词
D O I
10.2514/3.26160
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
The Jet Propulsion Laboratory and NASA Johnson Space Center recently engaged in the study of a combined Mars rover and surface sample return robotic mission with a projected start in the early 1990s. During the time of this effort, several possible scenarios were considered, the most ambitious being the delivery of a very capable rover to the Mars surface to analyze and collect samples, perhaps beyond 100 km from its landing site. The samples, about 5 kg worth, would be transported into orbit via an independent ascent vehicle, which would then rendezvous with and transfer the sample to an orbiting Earth return vehicle. At Earth, the samples could reach the surface with a direct atmospheric entry or be placed in orbit to be recovered by the Shuttle or a space station- based vehicle. This mission provides many interesting and challenging astrodynamic problems. Four of these problems have been investigated here. Two of them relate to satisfying specific mission requirements at Mars with a highly eccentric orbit having a very low periapsis altitude. One of them concerns the placing of an areosynchronous (similar to geosynchronous) communications satellite in orbit about Mars. The last investigates the problem of deorbiting to a specified landing site from a highly eccentric orbit. © 1988 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.
引用
收藏
页码:425 / 432
页数:8
相关论文
共 50 条
  • [1] MARS ROVER AND SAMPLE RETURN MISSION DESIGN
    KWOK, JH
    FRIEDLANDER, AL
    [J]. ORBITAL MECHANICS AND MISSION DESIGN, 1989, 69 : 609 - 623
  • [2] MARS ROVER SAMPLE RETURN MISSION DEFINITION
    FRIEDLANDER, AL
    [J]. CASE FOR MARS 111 : STRATEGIES FOR EXPLORATION - TECHNICAL, 1989, 75 : 227 - 234
  • [3] APPLICATION OF AEROASSIST TO THE MARS ROVER SAMPLE RETURN MISSION
    WILLCOCKSON, B
    [J]. ORBITAL MECHANICS AND MISSION DESIGN, 1989, 69 : 625 - 650
  • [4] Preliminary orbit design for a Mars sample return mission
    Wang ZhongSheng
    Zhou WenYan
    Tian Baiyi
    Zhang Lei
    Peng Jing
    [J]. SCIENTIA SINICA-PHYSICA MECHANICA & ASTRONOMICA, 2019, 49 (02)
  • [5] PRELIMINARY ASSESSMENT OF ROVER POWER-SYSTEMS FOR THE MARS ROVER SAMPLE RETURN MISSION
    BENTS, DJ
    [J]. SPACE POWER, 1989, 8 (03): : 319 - 332
  • [6] Mars orbit rendezvous strategy for the Mars 2003/2005 Sample Return Mission
    D'Amario, LA
    Bollman, WE
    Lee, WJ
    Roncoli, RB
    Smith, JC
    Bhat, RS
    Frauenholz, RB
    [J]. ASTRODYNAMICS 1999, PTS 1-3, 2000, 103 : 103 - 121
  • [7] Autonomous rover technology for Mars sample return
    Weisbin, CR
    Rodriguez, G
    Schenker, PS
    Das, H
    Hayati, SA
    Baumgartner, ET
    Maimone, M
    Nesnas, IA
    Volpe, RA
    [J]. ISAIRAS '99: FIFTH INTERNATIONAL SYMPOSIUM ON ARTIFICIAL INTELLIGENCE, ROBOTICS AND AUTOMATION IN SPACE, 1999, 440 : 1 - 10
  • [8] Orbit acquisition, rendezvous, and docking with a noncooperative capsule in a Mars sample return mission
    Santoro, Riccardo
    Pontani, Mauro
    [J]. ACTA ASTRONAUTICA, 2023, 211 : 950 - 962
  • [9] The Endurance Lunar Rover Sample Return Mission
    Baker, John D.
    Elliott, John O.
    Keane, James T.
    Khan, Nadia R.
    Kornfeld, Richard P.
    Nayar, Hari D.
    Nesnas, Issa A.
    [J]. 2024 IEEE AEROSPACE CONFERENCE, 2024,
  • [10] SAMPLING BY THE NASA PERSERVERANCE ROVER FOR MARS SAMPLE RETURN
    Herd, C. D. K.
    Bosak, T.
    Farley, K. A.
    Stack, K. M.
    Benison, K. C.
    Cohen, B. A.
    Czaja, A. D.
    Debaille, V.
    Goreva, Y.
    Hausrath, E. M.
    Hickman-Lewis, K.
    Mansbach, E. N.
    Mayhew, L. E.
    Sephton, M. A.
    Randazzo, N.
    Shuster, D. L.
    Siljestrom, S.
    Simon, J. I.
    Wadhwa, M.
    Weiss, B. P.
    Zorzano, M. -P.
    Brown, A. J.
    [J]. METEORITICS & PLANETARY SCIENCE, 2023, 58 : A122 - A122