D-OPTIMUM DESIGNS FOR HETEROSCEDASTIC LINEAR-MODELS

被引:43
|
作者
ATKINSON, AC [1 ]
COOK, RD [1 ]
机构
[1] UNIV LONDON LONDON SCH ECON & POLIT SCI,DEPT STAT,LONDON WC2A 2AE,ENGLAND
关键词
BAYESIAN DESIGN; GENERAL EQUIVALENCE THEOREM; TAGUCHI METHODS;
D O I
10.2307/2291144
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The methods of optimum experimental design are applied to models in which the variance, as well as the mean, is a parametric function of explanatory variables. Extensions to standard optimality theory lead to designs when the parameters of both the mean and the variance functions, or the parameters of only one function, are of interest. The theory also applies whether the mean and variance are functions of the same variables or of different variables, although the mathematical foundations differ. The example studied is a second-order two-factor response surface for the mean with a parametric nonlinear variance function. The theory is used both for constructing designs and for checking optimality. A major potential for application is to experimental design in off-line quality control.
引用
收藏
页码:204 / 212
页数:9
相关论文
共 50 条
  • [1] D-optimum designs in multi-factor models with heteroscedastic errors
    Rodríguez, C
    Ortiz, I
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2005, 128 (02) : 623 - 631
  • [2] COMPROMISE DESIGNS IN HETEROSCEDASTIC LINEAR-MODELS
    DASGUPTA, A
    MUKHOPADHYAY, S
    STUDDEN, WJ
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1992, 32 (03) : 363 - 384
  • [3] D-OPTIMUM WEIGHING DESIGNS
    GALIL, Z
    KIEFER, J
    [J]. ANNALS OF STATISTICS, 1980, 8 (06): : 1293 - 1306
  • [4] Stability of the posterior mean in linear models - An admissibility property of D-optimum and E-optimum designs
    Meczarski, M
    Zielinski, R
    [J]. STATISTICS & PROBABILITY LETTERS, 1997, 33 (02) : 117 - 123
  • [5] D-OPTIMUM DESIGNS FOR CUBIC REGRESSION
    VUCHKOV, IN
    LETSKII, EK
    NIKIFOROVA, ES
    KRUG, GK
    [J]. INDUSTRIAL LABORATORY, 1971, 37 (07): : 1041 - +
  • [6] ESTIMATION OF PARAMETERS IN HETEROSCEDASTIC LINEAR-MODELS
    MAK, TK
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1992, 54 (02): : 649 - 655
  • [7] ROBUST ESTIMATION IN HETEROSCEDASTIC LINEAR-MODELS
    CARROLL, RJ
    RUPPERT, D
    [J]. ANNALS OF STATISTICS, 1982, 10 (02): : 429 - 441
  • [8] ESTIMATING HETEROSCEDASTIC VARIANCES IN LINEAR-MODELS
    HORN, SD
    HORN, RA
    DUNCAN, DB
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1975, 70 (350) : 380 - 385
  • [9] An Algorithm for Construction of Constrained D-Optimum Designs
    Ucinski, Dariusz
    [J]. STOCHASTIC MODELS, STATISTICS AND THEIR APPLICATIONS, 2015, 122 : 461 - 468
  • [10] SEQUENTIAL GENERATION OF D-OPTIMUM EXPERIMENTAL DESIGNS
    WYNN, HP
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1970, 41 (05): : 1655 - &