POLYNOMIAL FACTORIZATION - SHARP BOUNDS, EFFICIENT ALGORITHMS

被引:7
|
作者
BEAUZAMY, B
TREVISAN, V
WANG, PS
机构
[1] UNIV FED RIO GRANDE SUL,INST MATEMAT,BR-90000 PORTO ALEGRE,RS,BRAZIL
[2] KENT STATE UNIV,DEPT MATHS & COMP SCI,KENT,OH 44242
关键词
D O I
10.1006/jsco.1993.1028
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A new coefficient bound is established for factoring univariate polynomials over the integers. Unlike an overall bound, the new bound limits the size of the coefficients of at least one irreducible factor of the given polynomial. The single-factor bound is derived from the weighted norm introduced in Beauzamy et al. (1990) and is almost optimal. Effective use of this bound in p-adic lifting results in a more efficient factorization algorithm. A full example and comparisons with known coefficient bounds are included. © 1993 Academic Press Limited.
引用
收藏
页码:393 / 413
页数:21
相关论文
共 50 条
  • [1] Polynomial Networks and Factorization Machines: New Insights and Efficient Training Algorithms
    Blondel, Mathieu
    Ishihata, Masakazu
    Fujino, Akinori
    Ueda, Naonori
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 48, 2016, 48
  • [2] Sharp upper and lower bounds for a sine polynomial
    Alzer, Horst
    Kwong, Man Kam
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2016, 275 : 81 - 85
  • [3] SHARP POLYNOMIAL BOUNDS ON THE NUMBER OF SCATTERING POLES
    ZWORSKI, M
    [J]. DUKE MATHEMATICAL JOURNAL, 1989, 59 (02) : 311 - 323
  • [4] ON SOME ITERATIVE ALGORITHMS FOR POLYNOMIAL FACTORIZATION
    Toseva, Dilyana
    Kyurkchiev, Nikolay
    Iliev, Anton
    [J]. COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2011, 64 (10): : 1403 - 1414
  • [5] Sharp precision in Hensel lifting for bivariate polynomial factorization
    Lecerf, G
    [J]. MATHEMATICS OF COMPUTATION, 2006, 75 (254) : 921 - 933
  • [6] Effective Fast Algorithms for Polynomial Spectral Factorization
    D.A. Bini
    G. Fiorentino
    L. Gemignani
    B. Meini
    [J]. Numerical Algorithms, 2003, 34 : 217 - 227
  • [7] Effective fast algorithms for polynomial spectral factorization
    Bini, DA
    Fiorentino, G
    Gemignani, L
    Meini, B
    [J]. NUMERICAL ALGORITHMS, 2003, 34 (2-4) : 217 - 227
  • [8] Improved dense multivariate polynomial factorization algorithms
    Lecerf, Gregoire
    [J]. JOURNAL OF SYMBOLIC COMPUTATION, 2007, 42 (04) : 477 - 494
  • [9] Numerical algorithms for polynomial plus/minus factorization
    Hromcik, M.
    Sebek, M.
    [J]. INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2007, 17 (08) : 786 - 802
  • [10] Polynomial factorization algorithms over number fields
    Roblot, XF
    [J]. JOURNAL OF SYMBOLIC COMPUTATION, 2004, 38 (05) : 1429 - 1443