On inverses of pentadiagonal matrices

被引:0
|
作者
Al-Hassan, Qassem [1 ]
机构
[1] Univ Sharjah, Dept Math, POB 27272, Sharjah, U Arab Emirates
关键词
Pentadiagonal matrices; LU factorization; recursion relations; complexity;
D O I
10.1080/09720529.2009.10698219
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we introduce an algorithm that computes the inverse of a general nonsingular pentadiagonal matrix. This is done by computing the entries of the Crout's LU factorization of the matrix, then recursive relations are set up and used to compute the inverses of L and U, where these entries are filled up starting with the main diagonal, and then the first and second immediate upper diagonals in U-1. The same process is done for L-1, where the main diagonal is computed first, then the first and second immediate lower diagonals respectively. Finally, the required inverse is set to be equal to U-1L-1.
引用
收藏
页码:79 / 91
页数:13
相关论文
共 50 条
  • [1] Bounds For The Inverses Of Diagonally Dominant Pentadiagonal Matrices
    Huang, Zhuohong
    Liu, Jianzhou
    [J]. APPLIED MATHEMATICS E-NOTES, 2010, 10 : 11 - 18
  • [2] Some results on determinants and inverses of nonsingular pentadiagonal matrices
    Abderraman Marrero, J.
    Tomeo, V.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 275 : 447 - 455
  • [3] A tridiagonalization-based numerical algorithm for computing the inverses of (p, q)-pentadiagonal matrices
    Wang, Jie
    Jia, Ji-Teng
    Xie, Rong
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2023, 42 (04):
  • [4] A tridiagonalization-based numerical algorithm for computing the inverses of (p, q)-pentadiagonal matrices
    Jie Wang
    Ji-Teng Jia
    Rong Xie
    [J]. Computational and Applied Mathematics, 2023, 42
  • [5] Pentadiagonal Companion Matrices
    Eastman, Brydon
    Vander Meulen, Kevin N.
    [J]. SPECIAL MATRICES, 2016, 4 (01): : 13 - 30
  • [6] DETERMINANTS OF SOME PENTADIAGONAL MATRICES
    Losonczi, Laszlo
    [J]. GLASNIK MATEMATICKI, 2021, 56 (02) : 271 - 286
  • [7] THE FOLDING ALGORITHM FOR PENTADIAGONAL MATRICES
    KILLINGBECK, JP
    JOLICARD, G
    [J]. PHYSICS LETTERS A, 1992, 166 (3-4) : 159 - 162
  • [8] On the determinant of general pentadiagonal matrices
    da Fonseca, Carlos M.
    Losonczi, Laszlo
    [J]. PUBLICATIONES MATHEMATICAE-DEBRECEN, 2020, 97 (3-4): : 507 - 523
  • [9] Some determinantal considerations for pentadiagonal matrices
    Andelic, Milica
    da Fonseca, Carlos M.
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (16): : 3121 - 3129