RADIAL MARGINAL PERTURBATION OF 2-DIMENSIONAL SYSTEMS AND CONFORMAL-INVARIANCE

被引:10
|
作者
TURBAN, L
机构
[1] Laboratoire de Physique du Solide, Université de Nancy I, F54506 Vandoeuvre les Nancy Cedex
来源
PHYSICAL REVIEW B | 1991年 / 44卷 / 13期
关键词
D O I
10.1103/PhysRevB.44.7051
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The conformal mapping w = (L/2-pi)lnz transforms the critical plane with a radial perturbation alpha-rho-y into a cylinder with width L and a constant deviation alpha-(2-pi/L)y from the bulk critical point when the decay exponent y is such that the perturbation is marginal. From the known behavior of the homogeneous off-critical system on the cylinder, one may deduce the correlation functions and defect exponents on the perturbed plane. The results are supported by an exact solution for the Gaussian model.
引用
收藏
页码:7051 / 7053
页数:3
相关论文
共 50 条