The corneal endothelium pumps ions and water from the stroma to the aqueous humor, maintaining corneal transparency. This report investigates the possibility that cultured corneal endothelial cells express neurohormonal Ca2+ signaling pathways employed by other epithelia to regulate transport or other cellular functions. Agonist-stimulated changes in intracellular calcium ([Ca2+]i) in single bovine corneal endothelial cells (BCEC) derived from confluent cultures were measured by microspectrofluorimetry using the Ca2+-sensitive probe, fura 2. Mean resting ([Ca2+]i) in BCEC was 46 +/- 2 nM (n = 124). The muscarinic cholinergic agonist, carbachol, did not mobilize Ca2+, whereas histamine induced a rapid increase in [Ca2+]i to initial peak levels of 549 +/- 22 nM (n = 46) at maximally stimulating doses. The initial rise in [Ca2+]i in response to histamine was dose dependent, with a minimum effective dose of 50 nM, EC50 = 0.84 mumol/l, and a maximum effective dose of 10 mumol/l. [Ca2+]i decreased from the initial peak, but then stabilized to form an agonist-dependent sustained elevation or abruptly fell back to baseline to begin oscillatory fluctuations. The initial peak was insensitive to removal of extracellular calcium (Ca2+o), whereas subsequent elevations in [Ca2+]i or sustained [Ca2+]i oscillations required Ca2+o. The amplitude of the oscillations in [Ca2+] increased with an increase in [histamine]. However, frequency was independent of [histamine] (mean = 0.62 spikes min-1 +/- 0.06, n = 33). Histamine-induced Ca2+ mobilization was inhibited by the H-1 receptor antagonist triprolidine, but was unaffected by ranitidine (H-2 antagonist) or thioperamide (H-3 antagonist). These results indicate that histamine H-1 receptors are expressed in BCEC cultures and that histamine elicits a dose-dependent release of intracellular calcium and promotes extracellular Ca2+ entry in these cells.