Environmental data: multivariate Extreme Value Theory in practice

被引:0
|
作者
Juan, Cai Juan [1 ]
Anne-Laure, Fougeres [2 ]
Cecile, Mercadier [2 ]
机构
[1] Delft Univ Technol, Fac Elect Engn Math & Comp Sci, DIAM, Mekelweg 4, NL-2628 CD Delft, Netherlands
[2] Univ Lyon 1, CNRS, Inst Camille Jordan, UMR 5208, F-69622 Villeurbanne, France
来源
JOURNAL OF THE SFDS | 2013年 / 154卷 / 02期
关键词
Return level estimation; Extremal index; Cluster; Estimation of failure probability; Multivariate extreme values; Extremal dependence; Environnemental data;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let (X-t, Y-t) be a bivariate stationary time series in some environmental study. We are interested to estimate the failure probability defined as P (X-t > x, Y-t > y), where x and y are high return levels. For the estimation of high return levels, we consider three methods from univariate extreme value theory, two of which deal with the extreme clusters. We further derive estimators for the bivariate failure probability, based on Draisma et al. (2004)'s approach and on Heffernan and Tawn (2004)'s approach. The comparison on different estimators is demonstrated via a simulation study. To the best of our knowledge, this is the first time that such a comparative study is performed. Finally, we apply the procedures to the real data set and the results are discussed.
引用
收藏
页码:178 / 199
页数:22
相关论文
共 50 条
  • [1] MULTIVARIATE EXTREME-VALUE DISTRIBUTIONS WITH APPLICATIONS TO ENVIRONMENTAL DATA
    JOE, H
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1994, 22 (01): : 47 - 64
  • [2] RATES OF CONVERGENCE IN MULTIVARIATE EXTREME VALUE THEORY
    OMEY, E
    RACHEV, ST
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 1991, 38 (01) : 36 - 50
  • [3] ON THE DEPENDENCE FUNCTION OF SIBUYA IN MULTIVARIATE EXTREME VALUE THEORY
    OBRETENOV, A
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 1991, 36 (01) : 35 - 43
  • [4] EXTREME VALUE THEORY FOR MULTIVARIATE STATIONARY-SEQUENCES
    HSING, T
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 1989, 29 (02) : 274 - 291
  • [5] TESTING CONDITIONS AND ESTIMATING PARAMETERS IN EXTREME VALUE THEORY: APPLICATION TO ENVIRONMENTAL DATA
    Penalva, Helena
    Gomes, Dora Prata
    Manuela Neves, M.
    Nunes, Sandra
    [J]. REVSTAT-STATISTICAL JOURNAL, 2019, 17 (02) : 187 - 207
  • [6] Estimation of extreme wind pressure coefficient in a zone by multivariate extreme value theory
    Yang, Qingshan
    Li, Danyu
    Hui, Yi
    Law, Siu-Seong
    [J]. WIND AND STRUCTURES, 2020, 31 (03) : 197 - 207
  • [7] A new flexible extreme value model for modeling the extreme value data, with an application to environmental data
    Barakat, H. M.
    Omar, A. R.
    Khaled, O. M.
    [J]. STATISTICS & PROBABILITY LETTERS, 2017, 130 : 25 - 31
  • [8] A multivariate extreme value theory approach to anomaly clustering and visualization
    Maël Chiapino
    Stephan Clémençon
    Vincent Feuillard
    Anne Sabourin
    [J]. Computational Statistics, 2020, 35 : 607 - 628
  • [9] MULTIVARIATE EXTREME VALUE THEORY AND ITS USEFULNESS IN UNDERSTANDING RISK
    Dupuis, Debbie J.
    Jones, Bruce L.
    [J]. NORTH AMERICAN ACTUARIAL JOURNAL, 2006, 10 (04) : 1 - 27
  • [10] A multivariate extreme value theory approach to anomaly clustering and visualization
    Chiapino, Mael
    Clemencon, Stephan
    Feuillard, Vincent
    Sabourin, Anne
    [J]. COMPUTATIONAL STATISTICS, 2020, 35 (02) : 607 - 628