Taurochenodeoxycholate (TCDC) (or taurocholate, TC) excessively i.v. infused in rats causes an acute cholestasis accompanied by an excessive excretion of various proteins (lactate dehydrogenase, LDH, albumin, etc.) into the bile. This cholestasis was initially found to be effectively prevented by a simultaneous infusion of tauroursodeoxycholate (TUDC). Later this property was found to be shared by glycoursodeoxycholate (GUDC) and tauro (and glyco) alpha and beta-muricholate (MC) all known to be relatively hydrophilic. The extent of the preventative effect appears to be comparable for taurine and glycine conjugates of all three bile salts (UDC, alpha-MG and beta-MC). An albumin leakage into the bile enhanced by TCDC infusion appears to be mainly from albumin in the serum, since i.v. injected I-125-human Serum albumin excretion into the bile paralled the rat albumin excretion. Despite very drastic biochemical abnormalities induced by TCDC infusion, morphological correlates in the liver are scarce both from light and electron microscopic examinations, the only correlate,vith biochemical parameters being a sporadic necrosis of hepatocytes, especially in the periportal areas. Although there is not sufficient morphological evidence, it appears that TCDC infusion causes a direct communication between serum and bile leading to a rapid leakage of large molecules such as albumin and even gamma-globulin. Conjugates of hydrophilic bile salts such as UDC, alpha-MG and beta-MC efficiently prevent such bile abnormalities but their hydrophilicity is not the sole determinant of this property since a more hydrophilic bile salt such as taurodehydrocholate does not possess this property. The underlying mechanism(s) for this protective property remains uncertain.