APPROACH TO CHAOS - UNIVERSAL QUANTITATIVE PROPERTIES OF ONE-DIMENSIONAL MAPS

被引:15
|
作者
KAWAI, H
TYE, SHH
机构
来源
PHYSICAL REVIEW A | 1984年 / 30卷 / 04期
关键词
D O I
10.1103/PhysRevA.30.2005
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
引用
收藏
页码:2005 / 2023
页数:19
相关论文
共 50 条
  • [1] Complexity, chaos and one-dimensional maps
    Steeb, WH
    Solms, F
    SOUTH AFRICAN JOURNAL OF SCIENCE, 1996, 92 (07) : 353 - 354
  • [2] Statistical properties of chaos demonstrated in a class of one-dimensional maps
    Csordas, Andras
    Geza Gyoergyi
    Szepfalusy, Peter
    Tel, Tamas
    CHAOS, 1993, 3 (01) : 31 - 49
  • [3] PROPERTIES OF FULLY-DEVELOPED CHAOS IN ONE-DIMENSIONAL MAPS
    GYORGYI, G
    SZEPFALUSY, P
    JOURNAL OF STATISTICAL PHYSICS, 1984, 34 (3-4) : 451 - 475
  • [4] UNIVERSAL VECTOR SCALING IN ONE-DIMENSIONAL MAPS
    FRASER, S
    KAPRAL, R
    PHYSICAL REVIEW A, 1984, 30 (02): : 1017 - 1025
  • [5] Adaptation to the edge of chaos in one-dimensional chaotic maps
    Ando, Hiroyasu
    Aihara, Kazuyuki
    PHYSICAL REVIEW E, 2006, 74 (06):
  • [6] Cycling chaos in one-dimensional coupled iterated maps
    Palacios, A
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2002, 12 (08): : 1859 - 1868
  • [7] Universal Anderson localization in one-dimensional unitary maps
    Vakulchyk, Ihor
    Flach, Sergej
    CHAOS, 2023, 33 (08)
  • [8] UNIVERSAL SCALING OF WINDOWS FROM ONE-DIMENSIONAL MAPS
    BUCHER, M
    PHYSICAL REVIEW A, 1986, 33 (05): : 3544 - 3546
  • [9] Approach to the ordering of one-dimensional quadratic maps
    Chaos Solitons Fractals, 4 (565):
  • [10] An approach to the ordering of one-dimensional quadratic maps
    Pastor, G
    Romera, M
    Montoya, F
    CHAOS SOLITONS & FRACTALS, 1996, 7 (04) : 565 - 584