J-Calc: A Typed Lambda Calculus for Intuitionistic Justification Logic

被引:1
|
作者
Pouliasis, Konstantinos [1 ]
Primiero, Giuseppe [2 ]
机构
[1] CUNY, Grad Ctr, Dept Comp Sci, New York, NY USA
[2] Middlesex Univ, Dept Comp Sci, London, England
关键词
Typed lambda-calculus; Justification Logic; Modular Programming;
D O I
10.1016/j.entcs.2013.12.012
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we offer a system J-Calc that can be regarded as a typed lambda-calculus for the {->, perpendicular to} fragment of Intuitionistic Justification Logic. We offer different interpretations of J-Calc, in particular, as a two phase proof system in which we proof check the validity of deductions of a theory T based on deductions from a stronger theory T' and computationally as a type system for separate compilations. We establish some first metatheoretic results.
引用
收藏
页码:71 / 87
页数:17
相关论文
共 50 条
  • [1] Lambda calculus and intuitionistic linear logic
    Rocca S.R.D.
    Roversi L.
    Studia Logica, 1997, 59 (3) : 417 - 448
  • [2] STRONG NORMALIZATION OF A TYPED LAMBDA CALCULUS FOR INTUITIONISTIC BOUNDED LINEAR-TIME TEMPORAL LOGIC
    Kamide, Norihiro
    REPORTS ON MATHEMATICAL LOGIC, 2012, 47 : 29 - 61
  • [3] Propositions with Typed Lambda Calculus λ
    Singh H.
    SN Computer Science, 2022, 3 (3)
  • [4] HTLC: Hyperintensional typed Lambda calculus
    Fait, Michal
    Primiero, Giuseppe
    Journal of Applied Logics, 2021, 8 (02): : 469 - 495
  • [5] HTLC: HYPERINTENSIONAL TYPED LAMBDA CALCULUS
    Fait, Michal
    Primiero, Giuseppe
    JOURNAL OF APPLIED LOGICS-IFCOLOG JOURNAL OF LOGICS AND THEIR APPLICATIONS, 2021, 8 (02): : 469 - 495
  • [6] A typed lambda calculus with intersection types
    Bono, Viviana
    Venneri, Betti
    Bettini, Lorenzo
    THEORETICAL COMPUTER SCIENCE, 2008, 398 (1-3) : 95 - 113
  • [7] Atomic lambda-calculus: a typed lambda-calculus with explicit sharing
    Gundersen, Tom
    Heijltjes, Willem
    Parigot, Michel
    2013 28TH ANNUAL IEEE/ACM SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE (LICS), 2013, : 311 - 320
  • [8] TYPED LAMBDA-CALCULUS WITH RECURSIVE DEFINITIONS
    KOTOV, SV
    LECTURE NOTES IN COMPUTER SCIENCE, 1992, 620 : 246 - 257
  • [9] Semantics of a Typed Algebraic Lambda-Calculus
    Valiron, Benoit
    ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2010, (26): : 147 - 158
  • [10] Normalization by evaluation for typed lambda calculus with coproducts
    Altenkirch, T
    Dybjer, P
    Hofmann, M
    Scott, P
    16TH ANNUAL IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE, PROCEEDINGS, 2001, : 303 - 310