POSITIVE SOLUTION OF CRITICAL HARDY-SOBOLEV ELLIPTIC SYSTEMS WITH THE BOUNDARY SINGULARITY

被引:0
|
作者
Yang, Jianfu [1 ]
Zhou, Yimin [1 ]
机构
[1] Jiangxi Normal Univ Nanchang, Dept Math, Nanchang 330022, Jiangxi, Peoples R China
来源
关键词
existence; positive solution; critical Hardy-Sobolev exponent; nonlinear system;
D O I
10.7153/dea-05-16
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we are concerned with the existence of positive solutions to the system { -Delta u = 2p/p+q u(p-1) v(q) + 2 lambda alpha/alpha+beta u(alpha-1) v(beta)/vertical bar x vertical bar(s) , in Omega -Delta v = 2q/p+q u(p) v(q-1) + 2 lambda alpha/alpha+beta u(alpha) v(beta-1)/vertical bar x vertical bar(s) , in Omega (0.1) u > 0, v > 0, in Omega u = v = 0, on partial derivative Omega, where Omega is a C-2 domain in R-N with 0 epsilon partial derivative Omega, 0 < s < 2, lambda >0, p + q =2* = 2N/N-2, alpha + beta = 2*(s) = 2(N s)/N-2, N >= 3. We show that if Omega = R-+(N), problem (0.1) possesses a least energy solution and if Omega is bounded, 0 epsilon partial derivative Omega, there exists lambda* > 0 such that problem (0.1) has at least a positive solution provided 0 < lambda < lambda*.
引用
收藏
页码:249 / 269
页数:21
相关论文
共 50 条