MULTIDIMENSIONAL-SCALING IN THE CITY-BLOCK METRIC - A COMBINATORIAL APPROACH

被引:36
|
作者
HUBERT, L [1 ]
ARABIE, P [1 ]
HESSONMCINNIS, M [1 ]
机构
[1] RUTGERS STATE UNIV,GRAD SCH MANAGEMENT,NEW BRUNSWICK,NJ 08903
关键词
CITY-BLOCK METRIC; MULTIDIMENSIONAL SCALING; COMBINATORIAL OPTIMIZATION;
D O I
10.1007/BF02621407
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present an approach, independent of the common gradient-based necessary conditions for obtaining a (locally) optimal solution, to multidimensional scaling using the city-block distance function, and implementable in either a metric or nonmetric context. The difficulties encountered in relying on a gradient-based strategy are first reviewed: the general weakness in indicating a good solution that is implied by the satisfaction of the necessary condition of a zero gradient, and the possibility of actual nonconvergence of the associated optimization strategy. To avoid the dependence on gradients for guiding the optimization technique, an alternative iterative procedure is proposed that incorporates (a) combinatorial optimization to construct good object orders along the chosen number of dimensions and (b) nonnegative least-squares to re-estimate the coordinates for the objects based on the object orders. The re-estimated coordinates are used to improve upon the given object orders, which may in turn lead to better coordinates, and so on until convergence of the entire process occurs to a (locally) optimal solution. The approach is illustrated through several data sets on the perception of similarity of rectangles and compared to the results obtained with a gradient-based method.
引用
收藏
页码:211 / 236
页数:26
相关论文
共 50 条