A NOTE ON IDENTITIES FOR CURVATURE TENSOR IN NON-RIEMANNIAN GEOMETRIES

被引:0
|
作者
ZUND, JD
机构
来源
TENSOR | 1966年 / 17卷 / 01期
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:24 / &
相关论文
共 50 条
  • [1] Ricci Curvature Tensor and Non-Riemannian Quantities
    Li, Benling
    Shen, Zhongmin
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2015, 58 (03): : 530 - 537
  • [2] DIRAC EQUATION IN NON-RIEMANNIAN GEOMETRIES
    Formiga, J. B.
    Romero, C.
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2013, 10 (07)
  • [3] On the non-Riemannian quantity Ξ-curvature of (α, β)-metrics
    Chen, Guangzu
    Liao, Jiayu
    Liu, Lihong
    JOURNAL OF GEOMETRY AND PHYSICS, 2024, 195
  • [4] RIEMANN CURVATURE TENSOR IN NONHOLONOMIC COORDINATES AND NON-RIEMANNIAN SPACE-TIMES
    SMALLEY, LL
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1984, 23 (10) : 1001 - 1008
  • [5] Extended schouten classification for non-Riemannian geometries
    Casanova, Sabrina
    Lecian, Orchidea Maria
    Montani, Giovanni
    Ruffini, Remo
    Zalaletdinov, Roustam
    MODERN PHYSICS LETTERS A, 2008, 23 (01) : 17 - 23
  • [6] Non-Riemannian and fractal geometries of fracturing in geomaterials
    Nagahama, H
    GEOLOGISCHE RUNDSCHAU, 1996, 85 (01): : 96 - 102
  • [7] On Kropina metrics with non-Riemannian curvature properties
    Chen, Guangzu
    Liu, Lihong
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2015, 43 : 180 - 191
  • [8] Energy-momentum and equivalence principle in non-Riemannian geometries
    Castagnino, M
    Levinas, ML
    Umerez, N
    GENERAL RELATIVITY AND GRAVITATION, 1997, 29 (06) : 691 - 703
  • [9] Energy-Momentum and Equivalence Principle in Non-Riemannian Geometries
    M. Castagnino
    M. L. Levinas
    N. Umérez
    General Relativity and Gravitation, 1997, 29 : 691 - 703
  • [10] Tolman-Ehrenfest-Klein law in non-Riemannian geometries
    Lima, J. A. S.
    Santos, J.
    PHYSICAL REVIEW D, 2021, 104 (12)