TOWARDS A UNIFICATION OF GRAVITY AND YANG-MILLS THEORY

被引:14
|
作者
CHAKRABORTY, S [1 ]
PELDAN, P [1 ]
机构
[1] JADAVPUR UNIV,DEPT MATH,CALCUTTA 700032,W BENGAL,INDIA
关键词
D O I
10.1103/PhysRevLett.73.1195
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce a gauge and diffeomorphism invariant theory on the Yang-Mills phase space. The theory is well defined for an arbitrary gauge group whose Lie algebra admits a nondegenerate invariant bilinear form, and it contains only first class constraints. With gauge group SO(3, C), the theory equals the Ashtekar formulation of gravity with a cosmological constant. For Lorentzian signature, the theory is complex, and we have not found any good reality conditions. In the Euclidean signature case, everything is real. By using gauge group SO(3) X G(YM) and doing a weak field expansion around de Sitter spacetime, the theory is shown to give the conventional Yang-Mills theory to the lowest order in the fields.
引用
收藏
页码:1195 / 1198
页数:4
相关论文
共 50 条
  • [1] Towards a Loop Quantum Gravity and Yang-Mills unification
    Alexander, Stephon
    Marciano, Antonino
    Tacchi, Ruggero Altair
    [J]. PHYSICS LETTERS B, 2012, 716 (02) : 330 - 333
  • [2] Plebanski action extended to a unification of gravity and Yang-Mills theory
    Smolin, Lee
    [J]. PHYSICAL REVIEW D, 2009, 80 (12):
  • [3] UNIFICATION OF SUPERGRAVITY AND YANG-MILLS THEORY
    FREEDMAN, DZ
    SCHWARZ, JH
    [J]. PHYSICAL REVIEW D, 1977, 15 (04): : 1007 - 1012
  • [4] Yang-Mills Theory of Gravity
    Al Matwi, Malik
    [J]. PHYSICS, 2019, 1 (03): : 339 - 359
  • [5] UNIFICATION OF YANG-MILLS THEORY AND SUPERSTRINGS
    CHAPLINE, GF
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1988, 3 (07): : 1663 - 1673
  • [6] GRAVITY AND YANG-MILLS THEORY
    Ananth, Sudarshan
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2010, 19 (14): : 2379 - 2384
  • [7] UNIFICATION OF GRAVITY AND YANG-MILLS THEORY IN (2+1) DIMENSIONS
    PELDAN, P
    [J]. NUCLEAR PHYSICS B, 1993, 395 (1-2) : 239 - 262
  • [8] Generalized Yang-Mills theory and gravity
    Ho, Pei-Ming
    [J]. PHYSICAL REVIEW D, 2016, 93 (04)
  • [9] Towards equivariant Yang-Mills theory
    Bonechi, F.
    Cattaneo, A. S.
    Zabzine, M.
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2023, 189
  • [10] Yang-Mills magnetofluid unification
    Bambah, Bindu A.
    Mahajan, Swadesh M.
    Mukku, Chandrasekher
    [J]. PHYSICAL REVIEW LETTERS, 2006, 97 (07)