SPLITTING FIELDS OF ASSOCIATION SCHEMES

被引:10
|
作者
MUNEMASA, A
机构
[1] Department of Mathematics, The Ohio State University, Columbus
关键词
D O I
10.1016/0097-3165(91)90014-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The splitting field K of a commutative association scheme is the extension of the rationals by the adjunction of all eigenvalues of the association scheme. Let L be a subfield of K containing all the Krein parameters. It is shown that the Galois group of K L is contained in the center of the Galois group of K Q. In particular, if the Krein parameters are all rational, then the eigenvalues are contained in a cyclotomic number field. © 1991.
引用
收藏
页码:157 / 161
页数:5
相关论文
共 50 条
  • [1] Frame numbers, splitting fields, and integral adjacency algebras of commutative association schemes
    Hanaki, Akihide
    [J]. ARCHIV DER MATHEMATIK, 2020, 114 (03) : 259 - 263
  • [2] Frame numbers, splitting fields, and integral adjacency algebras of commutative association schemes
    Akihide Hanaki
    [J]. Archiv der Mathematik, 2020, 114 : 259 - 263
  • [3] Computation Schemes for Splitting Fields of Polynomials
    Orange, Sebastien
    Renault, Guenael
    Yokoyama, Kazuhiro
    [J]. ISSAC2009: PROCEEDINGS OF THE 2009 INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION, 2009, : 279 - 286
  • [4] Association schemes perspective of microbubble cluster in ultrasonic fields
    Behnia, S.
    Yahyavi, M.
    Habibpourbisafar, R.
    [J]. ULTRASONICS SONOCHEMISTRY, 2018, 44 : 45 - 52
  • [5] Splitting Fields
    Schwarzweller, Christoph
    [J]. FORMALIZED MATHEMATICS, 2021, 29 (03): : 129 - 139
  • [6] Association Schemes of Symmetric Matrices Over Finite Fields of Characteristic Two
    王仰贤
    马建敏
    [J]. Science Bulletin, 1994, (22) : 1859 - 1863
  • [7] A note on iterated splitting schemes
    Hundsdorfer, Willem
    Portero, Laura
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 201 (01) : 146 - 152
  • [8] Splitting schemes for pseudoparabolic equations
    P. N. Vabishchevich
    A. V. Grigor’ev
    [J]. Differential Equations, 2013, 49 : 807 - 814
  • [9] On the convergence and local splitting error of different splitting schemes
    Faragó, I
    Havasi, A
    [J]. PROGRESS IN COMPUTATIONAL FLUID DYNAMICS, 2005, 5 (08): : 495 - 504
  • [10] Splitting schemes for pseudoparabolic equations
    Vabishchevich, P. N.
    Grigor'ev, A. V.
    [J]. DIFFERENTIAL EQUATIONS, 2013, 49 (07) : 807 - 814