ERGODIC PROPERTIES OF A DYNAMICAL SYSTEM ARISING FROM PERCOLATION THEORY

被引:10
|
作者
KRAAIKAMP, C
MEESTER, R
机构
[1] DELFT UNIV TECHNOL,DEPT MATH,2628 CD DELFT,NETHERLANDS
[2] UNIV UTRECHT,DEPT MATH,3508 TA UTRECHT,NETHERLANDS
关键词
D O I
10.1017/S0143385700008592
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the following dynamical system: take a d-dimensional real vector with positive coordinates. Now keep the smallest coordinate and subtract this one from the others, and iterate this process. When the starting vector is x we denote by x(n) the result after n iterations. It is shown that for almost all x, lim(n-->infinity)x(n) not equal 0 (the null vector). This is shown to be equivalent to the conjectured finiteness of an algorithm which produces the critical probability in a certain dependent percolation model.
引用
收藏
页码:653 / 661
页数:9
相关论文
共 50 条