THE DISCRETE K-FUNCTIONAL AND SPLINE SMOOTHING OF NOISY DATA

被引:2
|
作者
RAGOZIN, DL
机构
[1] Univ of Washington, Dep of, Mathematics, Seattle, WA, USA, Univ of Washington, Dep of Mathematics, Seattle, WA, USA
关键词
MATHEMATICAL TECHNIQUES - Approximation Theory;
D O I
10.1137/0722077
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Estimation of a function f from a finite sample y equals left bracket f(x//i) plus epsilon //i right bracket , x//i an element of left bracket a, b right bracket , subject to random noise epsilon //i, is a basic problem of numerical approximation theory. This paper defines a discrete analog, k//m(y, lambda ), of Peetre's K-functional, which relates to spline smoothing. We show how to use k//m and its connection to the mth order modulus of continuity to assess the smoothness of f and to choose a good smoothing spline approximation to f and some of its derivatives.
引用
收藏
页码:1243 / 1254
页数:12
相关论文
共 50 条
  • [1] A K-FUNCTIONAL CHARACTERIZATION OF THE SPLINE APPROXIMATION
    Tilca, Magnolia F.
    [J]. FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2008, 23 : 13 - 21
  • [2] SMOOTHING NOISY DATA WITH SPLINE FUNCTIONS
    HUTCHINSON, MF
    de Hoog, FR
    [J]. NUMERISCHE MATHEMATIK, 1985, 47 (01) : 99 - 106
  • [3] SMOOTHING NOISY DATA WITH SPLINE FUNCTIONS
    WAHBA, G
    [J]. NUMERISCHE MATHEMATIK, 1975, 24 (05) : 383 - 393
  • [4] CHOICE OF THE SMOOTHING PARAMETER IN THE SMOOTHING OF NOISY DATA BY SPLINE FUNCTIONS
    UTRERASDIAZ, F
    [J]. NUMERISCHE MATHEMATIK, 1980, 34 (01) : 15 - 28
  • [5] OPTIMAL SMOOTHING OF NOISY DATA USING SPLINE FUNCTIONS
    UTRERAS, F
    [J]. SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1981, 2 (03): : 349 - 362
  • [6] Smoothing noisy spectroscopic data with many-knot spline method
    Zhu, M. H.
    Liu, L. G.
    Qi, D. X.
    You, Z.
    Xu, A. A.
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2008, 589 (03): : 484 - 486
  • [7] Free-knot spline smoothing for functional data
    Gervini, Daniel
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2006, 68 : 671 - 687
  • [8] Estimation of a K-Functional of Higher Order in Terms of a K-Functional of Lower Order
    E. I. Radzievskaya
    G. V. Radzievskii
    [J]. Ukrainian Mathematical Journal, 2003, 55 (11) : 1841 - 1852
  • [9] SMOOTHING OF NOISY HUMAN MOTION DATA USING DIGITAL FILTERING AND SPLINE CURVES
    LOMBROZO, PC
    BARR, RE
    ABRAHAM, LD
    [J]. PROCEEDINGS OF THE ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, PTS 1-4, 1988, : 653 - 654
  • [10] On the K-functional in learning theory
    Sheng, Bao-Huai
    Wang, Jian-Li
    [J]. ANALYSIS AND APPLICATIONS, 2020, 18 (03) : 423 - 446