Non-classical polar unitals in finite Figueroa planes

被引:0
|
作者
Hui, Man [1 ]
Wong, Philip [1 ]
机构
[1] Univ Hong Kong, Dept Math, Hong Kong, Hong Kong, Peoples R China
关键词
Figueroa plane; unitary polarity; Figueroa unital; classical unital; O'Nan configuration; Wilbrink's conditions;
D O I
10.1007/s00022-012-0121-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The finite Figueroa planes are non-Desarguesian projective planes of order q(3) for all prime powers q > 2. These planes were constructed algebraically in 1982 by Figueroa, and Hering and Schaeffer, and synthetically in 1986 by Grundhofer. All Figueroa planes of finite square order are shown to possess a unitary polarity by de Resmini and Hamilton in 1998, and hence admit unitals. Using the result of O'Nan in 1971 on the non-existence of his configuration in a classical unital, and the intrinsic characterization by Taylor in 1974 of the notion of perpendicularity induced by a unitary polarity in the classical plane (introduced by Dembowski and Hughes in 1965), we show that these Figueroa polar unitals do not satisfy a necessary condition, introduced by Wilbrink in 1983, for a unitary block design to be classical, and hence they are not classical.
引用
收藏
页码:263 / 273
页数:11
相关论文
共 50 条
  • [1] Non-classical polar unitals in finite Figueroa planes
    Man Wa Hui
    Philip P. W. Wong
    Journal of Geometry, 2012, 103 (2) : 263 - 273
  • [2] Non-classical polar unitals in finite Dickson semifield planes
    Hui A.M.W.
    Law H.F.
    Tai Y.K.
    Wong P.P.W.
    Journal of Geometry, 2013, 104 (3) : 469 - 493
  • [3] Hyperovals and unitals in Figueroa planes
    de Resmini, MJ
    Hamilton, N
    EUROPEAN JOURNAL OF COMBINATORICS, 1998, 19 (02) : 215 - 220
  • [4] Unitals in finite Desarguesian planes
    Cossidente, A
    Ebert, GL
    Korchmáros, G
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2001, 14 (02) : 119 - 125
  • [5] Non-classical hyperplanes of finite thick dual polar spaces
    De Bruyn, Bart
    ELECTRONIC JOURNAL OF COMBINATORICS, 2018, 25 (01):
  • [6] Unitals in Finite Desarguesian Planes
    A. Cossidente
    G.L. Ebert
    G. Korchmáros
    Journal of Algebraic Combinatorics, 2001, 14 : 119 - 125
  • [7] Fano subplanes in finite Figueroa planes
    Petrak, Bryan
    JOURNAL OF GEOMETRY, 2010, 99 (1-2) : 101 - 106
  • [8] Polar unitals in compact eight-dimensional planes
    M. Stroppel
    Archiv der Mathematik, 2004, 83 : 171 - 182
  • [9] Polar unitals in compact eight-dimensional planes
    Stroppel, M
    ARCHIV DER MATHEMATIK, 2004, 83 (02) : 171 - 182
  • [10] Eggs in finite projective spaces and unitals in translation planes
    Monzillo, Giusy
    Penttila, Tim
    Siciliano, Alessandro
    DESIGNS CODES AND CRYPTOGRAPHY, 2022, 91 (4) : 1475 - 1485